

E-ISSN: 2706-8927 P-ISSN: 2706-8919 www.allstudyjournal.com IJAAS 2023; 5(6): 01-05 Received: 01-03-2023 Accepted: 06-04-2023

Dr. Gurbir Singh

Department of Physical Education, Khalsa College of Physical Education, Heir, Amritsar, Punjab, India

Dr. Baljinder Singh

Department of Physical Education, Guru Nanak Dev University, Amritsar, Punjab, India

Dr. Amandeep Singh

Department of Physical Education, Guru Nanak Dev University, Amritsar, Punjab, India

Dr. Maman Paul Department of Physiotherapy, Guru Nanak Dev University, Amritsar, Punjab, India

Corresponding Author: Dr. Gurbir Singh Department of Physical Education, Khalsa College of Physical Education, Heir, Amritsar, Punjab, India.

A study of anthropometric measurements among volleyball players

Dr. Gurbir Singh, Dr. Baljinder Singh, Dr. Amandeep Singh and Dr. Maman Paul

DOI: https://doi.org/10.33545/27068919.2023.v5.i6a.991

Abstract

The aim of the present investigation was to find out the significant differences of "Anthropometric Measurements", among different playing positions of university level volleyball players. Measurements were collected (N=163) from Guru Nanak Dev University, Amritsar (N1=57), Punjabi University, Patiala (N₂=39), Panjab University, Chandigarh (N₃=37) and I.K. Gujral Punjab Technical University Jalandhar (N₄=30) with reference to playing position of inter-college volleyball players. This study's data analysis procedure was divided into two sections: Section-1: A descriptive analysis was used in the first section to describe the data distribution. Section-2: The hypothesis testing with ANOVA was included in the second section. The data was statistically analyzed using SPSS (Statistical Package for the Social Sciences) version 17 to draw conclusions. In addition, if the f-value was found to be significant, the Scheffe test for multiple comparison methods was used in this study. The level of significance was set at 0.05. Weight: The test statistic F equals 0.209389, is in the 95% critical value accepted range: [-o: 3.0525]. Height: The test statistic F equals 0.397644, is in the 95% critical value accepted range: [-∞: 3.0977]. Biaccromial Diameter: The test statistic F equals 68.004707, is not in the 95% critical value accepted range: [-∞: 3.0525]. Biilliac Diameter: The test statistic F equals 21.939010, is not in the 95% critical value accepted range: [-oc: 3.0525]. Anterior Posterior Chest: The test statistic F equals 12.875806, is not in the 95% critical value accepted range: $[-\infty]$: 3.0525]. Transverse Chest: The test statistic F equals 22.609761, is not in the 95% critical value accepted range: [-oc: 3.0525]. Mid Upper Arm Circumference: The test statistic F equals 13.920474, is not in the 95% critical value accepted range: [-∞: 3.0525]. Chest Circumference Normal: The test statistic F equals 27.947329, is not in the 95% critical value accepted range: [-o: 3.0525]. Waist Circumference: The test statistic F equals 2.599908, is in the 95% critical value accepted range: [-∞: 3.0525]. Calf Circumference: The test statistic F equals 12.573539, is not in the 95% critical value accepted range: [-∞: 3.0525]. Hip Circumference: The test statistic F equals 41.639098, is not in the 95% critical value accepted range: [-oc: 3.0525]. Biceps Skinfold: The test statistic F equals 11.916731, is not in the 95% critical value accepted range: [-o: 3.0525]. Triceps Skinfold: The test statistic F equals 33.442666, is not in the 95% critical value accepted range: [-oc: 3.0525]. Subscapular Skinfold: The test statistic F equals 22.509007, is not in the 95% critical value accepted range: [-o: 3.0525]. Abdominal Skinfold: The test statistic F equals 7.960778, is not in the 95% critical value accepted range: [-oc: 3.0525]. Calf Skinfold: The test statistic F equals 13.541014, is not in the 95% critical value accepted range: [-o: 3.0525]. Fat Mass: The test statistic F equals 11.136638, is not in the 95% critical value accepted range: [-∞: 3.0525]. Fat Percentage: The test statistic F equals 84.414188, is not in the 95% critical value accepted range: [-oc: 3.0525]. Body Mass Index: The test statistic F equals 33.344641, is not in the 95% critical value accepted range: [-o: 3.0525].

Keywords: Anthropometric measurements, volleyball players, setter, hitter, libero

Introductions

Anthropomorphic measurement, the scientific study of human body dimensions and proportions, has significant implications in various fields, including ergonomics, product design, healthcare, and forensic science ^[1]. This review paper aims to provide a comprehensive overview of anthropomorphic measurement, exploring the various methods used to assess and quantify human body characteristics ^[2]. By examining a wide range of studies, this paper discusses the applications of anthropomorphic measurement in diverse domains, such as the clothing and apparel industry, automotive design, furniture design, and medical fields. Additionally, this review highlights the advancements in technology that have revolutionized anthropometric data collection, analysis, and visualization.

By synthesizing existing literature, this paper seeks to contribute to a better understanding of anthropomorphic measurement and its significance in improving humancentred designs and enhancing overall well-being [3-7]. Anthropomorphic measurement, also known as anthropometry, refers to the systematic measurement of human body dimensions and physical characteristics. This scientific approach plays a vital role in understanding human diversity, improving the design of products and environments, and enhancing human-machine interactions. Over the years, anthropometric data have been used in various fields, including ergonomics, fashion and apparel design, healthcare, and robotics, among others. This review paper aims to explore the advancements in anthropomorphic measurement, its applications, and the challenges faced in this field [8-10].

Material and Methods Participants

Measurements were collected (N=163) from Guru Nanak Dev University, Amritsar (N₁=57), Punjabi University, Patiala (N₂=39), Panjab University, Chandigarh (N₃=37) and I.K. Gujral Punjab Technical University Jalandhar $(N_4=30)$ with reference to playing position of inter-college volleyball players.

Universities	Setter	Hitter	Libero	Total
Guru Nanak Dev University, Amritsar	14	32	11	57
Punjabi University, Patiala	12	18	9	39
Panjab University, Chandigarh	10	20	7	37
I.K. Gujral Punjab Technical University, Jalandhar	8	16	6	30
Sample Size	44	86	33	163

Statistical Analysis

This study's data analysis procedure was divided into two sections: Section-1: A descriptive analysis was used in the first section to describe the data distribution. Section-2: The hypothesis testing with ANOVA was included in the second section. The data was statistically analyzed using SPSS (Statistical Package for the Social Sciences) version 17 to draw conclusions. In addition, if the f-value was found to be significant, the Scheffe test for multiple comparison methods was used in this study. The level of significance was set at 0.05.

Anthropometric	measurements
----------------	--------------

Anthropometric Measurements	Tools
Weight (kg)	Weighing Machine
Height (cm)	Anthropometer
Biaccromial Diameter (cm)	Anthropometer
Biilliac Diameter (cm)	Anthropometer
Anterior Posterior Chest (cm)	Spreading Caliper (large)
Transverse Chest (cm)	Anthropometer
Mid Upper Arm Circumference (cm)	Steel Tape
Chest Circumference Normal (cm)	Steel Tape
Waist Circumference (cm)	Steel Tape
Calf Circumference (cm)	Steel Tape
Hip Circumference (cm)	Steel Tape
Biceps Skinfold (mm)	Holtain Skinfold Caliper
Triceps Skinfold (mm)	Holtain Skinfold Caliper
Subscapular Skinfold (mm)	Holtain Skinfold Caliper
Suprailiac Skinfold (mm)	Holtain Skinfold Caliper
Abdominal Skinfold (mm)	Holtain Skinfold Caliper
Calf Skinfold (mm)	Holtain Skinfold Caliper
Fat Mass (kg)	Omron Body Fat Monitor
Fat Percentage	Omron Body Fat Monitor
Body Mass Index	Calculated Term

Results

Table 1:	ANOVA	analysis	of W	eight	(kg).
----------	-------	----------	------	-------	-------

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	4.063844	2.031922		
Error (within groups)	160	1552.647981	9.704050	0.209389	0.811301
Total	162	1556.711825	9.609332		

That F value is 0.209389 and P value is 0.811301 at (alpha=0.05). The results revealed that groups are different significantly.

 Table 2: ANOVA analysis of Height (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	31.367473	15.683737		
Error (within groups)	90	3549.750625	39.441674	0.397644	0.673076
Total	92	3581.118098	38.925197		

That F value is 0.397644 and P value is 0.673076 at (alpha=0.05). The results revealed that groups are different significantly.

Table 3: ANOVA analysis of Biaccromial Diameter (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	5086.362523	2543.181262		
Error (within groups)	160	5983.541740	37.397136	68.004707	0.00000
Total	162	11069.90426	68.332742		

That F value is 68.004707 and P value is 0.00000 at (alpha=0.05). The results revealed that groups are different significantly.

Table 4:	ANOVA	analysis	of Biilliac	Diameter ((cm)
Lable 4.	1110111	unui y 515	or Diminuc	Diameter	cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	1487.873446	743.936723		
Error (within groups)	160	5425.489712	33.909311	21.939010	3.80160
Total	162	6913.363159	42.675081		

That F value is 21.939010 and P value is 3.80160e-9 at (alpha=0.05). The results revealed that groups are different significantly.

Table 5: ANOVA analysis of Anterior Posterior Chest (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	567.292761	283.646380		
Error (within groups)	160	3524.705277	22.029408	12.875806	0.00000653118
Total	162	4091.998038	25.259247		

That F value is 12.875806 and P value is 0.00000653118 at (alpha=0.05). The results revealed that groups are different significantly.

Table 6: ANOVA analysis of Transverse Chest (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	871.407608	435.703804		
Error (within groups)	160	3083.297063	19.270607	22.609761	2.24960
Total	162	3954.704671	24.411757		

That F value is 22.609761 and P value is 2.24960e-9 at (alpha=0.05). The results revealed that groups are different significantly.

Table 7: ANOVA analysis of Mid Upper Arm Circumference (cm).

			* *		
Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	868.053524	434.026762		
Error (within groups)	160	4988.643512	31.179022	13.920474	0.00000266917
Total	162	5856.697037	36.152451		

That F value is 13.920474 and P value is 0.00000266917 at (alpha=0.05). The results revealed that groups are different significantly.

Table 8: ANOVA analysis of Chest Circumference Normal (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	3799.509848	1899.754924		
Error (within groups)	160	10876.20172	67.976261	27.947329	3.89266
Total	162	14675.71157	90.590812		

That F value is 27.947329 and P value is 3.89266e-11 at (alpha=0.05). The results revealed that groups are different significantly.

Table 9: ANOVA analysis of Waist Circumference (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	1378.583619	689.291810		
Error (within groups)	160	42419.45566	265.121598	2.599908	0.0774165
Total	162	43798.03928	270.358267		

That F value is 2.599908 and P value is 0.0774165 at (alpha=0.05). The results revealed that groups are different significantly.

Table 10: ANOVA analysis of Calf Circumference (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	901.729743	450.864871		
Error (within groups)	160	5737.317118	35.858232	12.573539	0.00000847715
Total	162	6639.046860	40.981771		

That F value is 12.573539 and P value is 0.00000847715 at (alpha=0.05). The results revealed that groups are different significantly.

Table 11: ANOVA analysis of Hip Circumference (cm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	5755.003688	2877.501844		
Error (within groups)	160	11056.92300	69.105769	41.639098	2.77556
Total	162	16811.92669	103.777325]	

That F value is 41.639098 and P value is 2.77556e-15 at (alpha=0.05). The results revealed that groups are different significantly.

Table 12: ANOVA	analysis of Bicep	s Skinfold (mm).
-----------------	-------------------	------------------

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	470.698628	235.349314		
Error (within groups)	160	3159.917662	19.749485	11.916731	0.0000149842
Total	162	3630.616290	22.411212		

That F value is 11.916731 and P value is 0.0000149842 at (alpha=0.05). The results revealed that groups are different significantly.

Table 13: ANOVA	analysis o	of Tricens	Skinfold (mm)
1 abic 15. / 110 v / 1	anarysis	n meeps	okinioid (mm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	2329.318555	1164.659278		
Error (within groups)	160	5572.088150	34.825551	33.442666	7.32969
Total	162	7901.406705	48.774115		

That F value is 33.442666 and P value is 7.32969e-13 at (alpha=0.05). The results revealed that groups are different significantly.

Table 14: ANOVA analysis of Subscapular Skinfold (mm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	1412.274915	706.137457		
Error (within groups)	160	5019.412702	31.371329	22.509007	2.43353
Total	162	6431.687617	39.701775		

That F value is 22.509007 and P value is 2.43353e-9 at (alpha=0.05). The results revealed that groups are different significantly.

Table 15: ANOVA	analysis of	Abdominal	Skinfold	(mm).
-----------------	-------------	-----------	----------	-------

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	357.271358	178.635679		
Error (within groups)	160	3590.315833	22.439474	7.960778	0.000505911
Total	162	3947.587192	24.367822	1	

That F value is 7.960778 and P value is 0.000505911 at (alpha=0.05). The results revealed that groups are different significantly.

Table 16: ANOVA analysis of Calf Skinfold (mm).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	554.296387	277.148193		
Error (within groups)	160	3274.770395	20.467315	13.541014	0.00000369006
Total	162	3829.066781	23.636215		

That F value is 13.541014 and P value is 0.00000369006 at (alpha=0.05). The results revealed that groups are different significantly.

Table 17: ANOVA analysis of Fat Mass (kg).

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	669.373659	334.686829		
Error (within groups)	160	4808.443415	30.052771	11.136638	0.0000296318
Total	162	5477.817073	33.813686		

That F value is 11.136638 and P value is 0.0000296318 at (alpha=0.05). The results revealed that groups are different significantly.

Table 18: ANOVA analysis of Fat Percentage.

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	2440.527617	1220.263808		
Error (within groups)	160	2312.907520	14.455672	84.414188	0.00000
Total	162	4753.435136	29.342192		

That F value is 84.414188 and P value is 0.00000 at (alpha=0.05). The results revealed that groups are different significantly.

Table 19: ANOVA analysis of Body Mass Index.

Source	DF	Sum of Square	Mean Square	F Statistic	P-value
Groups (between groups)	2	612.296663	306.148331		
Error (within groups)	160	1469.013655	9.181335	33.344641	7.85483
Total	162	2081.310318	12.847595		

That F value is 33.344641 and P value is 7.85483e-13 at (alpha=0.05). The results revealed that groups are different significantly.

Acknowledgements

A special acknowledgement of appreciation for this work in preparing the original manuscript is due to assistance from Guru Nanak Dev University, Amritsar, Punjab, India.

Funding

No external funding.

References

- 1. Pheasant S. Body space: Anthropometry, ergonomics, and the design of work (3rd ed.). CRC Press; c2017.
- Chaffin DB, Andersson GB. Occupational biomechanics (2nd ed.). John Wiley & Sons; c1991.
- 3. Gordon CC, Churchill T, Clauser CE, Bradtmiller B, McConville JT. Anthropometric survey of US Army

personnel: Methods and summary statistics. US Army Natick Research, Development and Engineering Center; c1989.

- 4. Pheasant S, Haslegrave C. Body dimensions: Design for comfort. Taylor & Francis; c2006.
- 5. Zhuang Z, Landsittel D. Anthropometric data and their application in ergonomics: A review. International Journal of Industrial Ergonomics. 2016;53:215-225.
- Carvalho MVG, Silva LMCL, Oliveira CSM, Machado MS. Anthropometry and ergonomics: A review of concepts, methods, and applications. Work, 2021;69(2), 371-389.
- Panero, J, Zelnik M. Human dimension and interior space: A source book of design reference standards. Whitney Library of Design; c1979.
- 8. Choi W, Park S, Lee S. Anthropometric data acquisition using depth cameras: A review. Sensors. 2019;19(18):3992.
- Subramanian S, Gruteser M, Hsu J, Liu AX. Research on human factors in intelligent transportation systems: A systematic review. IEEE Transactions on Intelligent Transportation Systems. 2015;6(4):1713-1725.
- 10. Khokhar ZO, Gyi DE, Casey SM. Integrating the human body and clothing: The foundations of anthropometry and ergonomics in design. Ergonomics, 2009;52(2):153-166.