

E-ISSN: 2706-8927 P-ISSN: 2706-8919 www.allstudyjournal.com IJAAS 2023; 5(1): 07-11

IJAAS 2023; 5(1): 07-11 Received: 04-10-2022 Accepted: 12-11-2022

Ravendra Kumar Yadav

Research Scholar, Department of Botany, S.G.S. Govt. P.G. College, Sidhi, Madhya Pradesh, India

Dr. IP Kumhar

Professor, Department of Botany, S.G.S. Govt. P.G. College, Sidhi, Madhya Pradesh, India Study of seed germination of *Cordia dichotoma* G. Forst. under laboratory condition

Ravendra Kumar Yadav and Dr. IP Kumhar

DOI: https://doi.org/10.33545/27068919.2023.v5.i1a.903

Abstract

The seeds of Cordia dichotoma were collected from trees with the ideal phenotypical characters of good height, large crown and medium aged with abundant seed production. The fresh seeds were collected manually and the extracted seeds were cleaned and thoroughly hand mixed to improve the homogeneity during the sampling. The seeds based on their diameter were graded into three classes i.e. small (L₁) (<1.2 cm), medium (L₂) (1.2-1.4 cm) and large (L₃) (>1.4 cm). The graded seeds were subjected to five different pre-sowing treatments for germination viz., Control (T1) (untreated seeds), Cold water treatment for 72 hours (T₂), Cow dung treatment for 7 days (T₃), Concentrated H₂SO₄ for 20 minutes followed by rinsing under running tap water (T₄) and Hot water treatment (80 °C) followed by 24 hours soaking (T₅). The graded and treated seeds were kept in seed germinator for four week. Watering and spray of fungicide was carried out manually when necessary. The effects of seed size and pre-sowing treatments on germination of seeds were explored periodically through counting the germinated seeds. The study revealed that seed parameters of the Cordia dichotoma were significantly influenced by seed size categories. The weight of 100 seeds was recorded maximum (209.22 g) in large size (L₃) seed category which is significantly differed from L₂ (medium) and L₁ (small). However no significant difference has been observed among seed viability. The highest germination per cent (68.54%), germination capacity (74.08) and germination energy (41.47%) was recorded in concentrated H₂SO₄ for 20 minutes followed by rinsing under running tap water (T₄) pre-sowing treatment while the lowest germination per cent (56.67%), germination capacity (64.08%) and germination energy minimum (30.75%) in T1(control). All treatments were significantly different from each other. On the other hand, among three seed category, large seed category (L₃) was recorded maximum per cent germination (76.23%), germination capacity (83.56%) and germination energy (47.11%) while the minimum germination per cent (46.24%) germination capacity (54.46%) and germination energy (25.34%) was found in small seed category (L1). But all three seed size categories differed significantly from each other. Among the treatment combinations, germinability parameters were recorded maximum in T₄L₃ (concentrated H₂SO₄ for 20 minutes followed by rinsing under running tap water+ large seed category). The seed size and pre sowing treatments often controls the germination and initial seedling growth in many tree species. Pre-sowing treatment methods are employed for overcoming seed dormancy and are used not only to ensure the rapid germination but it also decreases labour, cost and time for nursery production.

Keywords: Seed size, pre-sowing treatments, germination, laboratory condition

Introductions

Forest ecosystem plays an important role in the livelihood of people living in both mountains and lowland areas by supplying fresh water and air as well as providing a diversity of valuable forest products for medicine and food.

The species was identified as *Cordia dichotoma* G. Forst. The tree is 3–15 m in height. The leaves are simple and arranged spirally, inflorescence dichotomous, bisexual, with five gamosepalous and gamopetalous. Generative reproduction occurred at a low rate. The tree grew optimally in a dusty, sandy loam soil, pH 6.0-6.5 with a temperature ranged from 27-34 °C, a light intensity of 450-1580 lux, and an altitude of about 10 meters above sea level.

Cordia dichotoma is a small deciduous tree with a short bole and spreading crown. Usually a small tree growing 3 - 4 metres tall, though some specimens can reach a height of 20 metres or more. In larger specimens, such as found in Papua New Guinea, the bole can be 25 - 50cm in diameter and unbranched for up to 10 metres. Gathered from the wild for its many medicinal uses, the tree is also often cultivated for its fruits throughout the range of its natural distribution. Cordia dichotoma has a very wide distribution, large population, is not currently experiencing any major threats and no significant future threats have been identified.

Corresponding Author: Ravendra Kumar Yadav Research Scholar, Department of Botany, S.G.S. Govt. P.G. College, Sidhi, Madhya Pradesh, India In Cordia dichotoma, the seeds have mechanical dormancy caused by hard seed coat (Troup, 1921) [1]. Pre-sowing treatment methods are employed for overcoming seed dormancy in many species. Pre-treatment methods have to be adjusted for individual species and seed lots depending upon experiment, knowledge, practices and experience (Schmidt, 2000) [3]. Knowledge of biology and physiology of a seed helps in identifying the nature of specific seed problems and probable pre-treatment method for breaking seed dormancy (Bhardwaj and Chakraborty, 1994) [4]. Physical dormancy differs between species, stage of maturity and degree of drought; pre-treatment must be adjusted consequently. Physical dormancy may be overcome by manual scarification of the seed coat by piercing, nicking, chipping, filing or burning with the help of knife, needle, hot wire burner, abrasion paper (Catalan and Macchiavelli, 1991) [5], Hot water treatment or acid treatment (Kobmoo and Hellum, 1984; Khasa, 1992) [6-7]. Seed treatments are applied to ensure faster and uniform germination rates.

Materials and Methods

The present investigation was conducted in the laboratory of the Department of Botany, S.G.S. Govt. P.G. College Sidhi (M.P.) India. The seeds of *Cordia dichotoma* were collected from trees with the ideal phenotypical characters of good height, large crown, and medium aged with abundant seed production. The fresh seeds were collected manually and packed in gunny bags and brought to laboratory. The extracted seeds were cleaned and thoroughly hand mixed to improve the homogeneity during the sampling. The seeds based on their diameter were graded into three classes i.e. small (L_1) (<1.2 cm), medium (L_2) (1.2-1.4 cm) and large (L_3) (>1.4 cm).

The graded seeds were subjected to five different presowing treatments for germination viz., Control (T_1) (untreated seeds), Cold water treatment for 72 hours (T_2), Cow dung treatment for 7 days (T_3), Concentrated H_2SO_4 for 20 minutes followed by rinsing under running tap water (T_4) and Hot water treatment (80 °C) followed by 24 hours soaking (T_5).

The seeds were kept in germination trays under seed germinator for four week. Watering and spray of fungicide was carried out manually when necessary. The effects of seed size and pre-sowing treatments on germination of seeds were explored periodically through counting the germinated seeds. The following seed and germination parameters were recorded in laboratory condition.

100 seed weight (g): One hundred freshly harvested and graded seeds were randomly selected in three replications and weighed. The mean of these weights was taken to get average weight of a 100 seeds as per ISTA method (ISTA, 1966) [8].

Seed viability (%): Seed viability was determined by using Tetrazolium staining test (Bonner, 1974) ^[9], which indicate the presence of live tissue. One per cent solution of TTC (2, 3, 5 Triphenyl Tetrazolium Chloride) is applied to fully imbibed seeds, which was cut and opened lengthwise without damaging the embryo. The seeds were left over night for 18 to 24 hrs in the dark at 30 °C.

The live embryo, cotyledons and other tissue stained red indicated that the seeds are viable and unstained embryo is non-viable. The seeds were thereafter evaluated as viable and non-viable in percentage.

Seed viability (%) =
$$\frac{Number\ of\ viable\ seeds}{T\ otal\ number\ of\ seeds} \times 100$$

Germination per cent (GP): Germination per cent was calculated as the total number of seeds germinated at the end of experiment out of the total seeds sown in each treatment.

Germination (%) =
$$\frac{Number\ of\ seeds\ germinated}{T\ otal\ number\ of\ seeds\ sown} \times 100$$

Germination capacity (%): The cumulative number of seeds that germinated during the 28 days of test period plus the number of viable seeds at the end of the test expressed in percentage.

Germination energy (%): Germinating energy (GE) was calculated on the basis of the percentage of the total number of seeds that had germinated when the germination reached its peak.

$$GE~(\%) = \frac{\textit{Number of seeds germinated upto time of peak germination}}{\textit{Total number of seed sown}} \times 100$$

The experiment was arranged in a completely randomized design with three replications and 30 seeds per replicate. Seed germination was recorded daily up to 28 days after

Seed germination was recorded daily up to 28 days after kept under seed germinator.

The least significant difference at 5% level was used for testing the significant differences among treatments. Significance of difference between seed size categories and treatments was tested by ANOVA.

Results and Discussion

The results emerging from the investigation have been presented under following heads:

Seed weight and seed viability: Seed parameters of the *Cordia dichotoma* seeds were significantly influenced by seed size categories. The weight of 100 seeds was recorded

maximum (209.22 g) in large size (L_3) seed category which is significantly differed from L_2 (medium) and L_1 (small). The maximum seed viability (90%) was recorded in L_3 (large size) and minimum (80%) in L_1 (small size). However no significant difference has been observed among seed viability (Table 1).

Table 1: Effect of seed size on 100 seed weight and viability of freshly collected seeds of *Cordia dichotoma*

Category	100 Seed Weight (g)	Viability (%)
L ₁ (Small)	122.33	81.00 (8.98)
L ₂ (Medium)	161.86	87.82 (9.38)
L ₃ (Large)	209.24	90.02 (9.48)
CD (0.05)	3.486	NS

Note: Figures given in parenthesis are square root transformed values

Germination percent (GP): The mean maximum germination (68.54%) was recorded in T_4 (concentrated H_2SO_4 for 20 minutes followed by rinsing under running tap water) followed by T_3 (cow dung for 7 days) pre-sowing treatment while the minimum per cent germination was recorded in T_1 (control) (56.67%). All treatments were significantly different from each other. On the other hand, among three seed category, large seed category (L_3) was recorded mean maximum per cent germination (76.23%) while the least germination per cent (46.24%) was found in small seed category (L_1). But all three seed size categories differed significantly from each other. Among the treatment combinations, maximum germination (81.12%) was recorded in T_4L_3 and minimum germination (38.88%) was recorded in T_1L_1 (Table 2).

Table 2: Effect of seed size and pre-sowing treatments on germination (%) of *Cordia dichotoma* under laboratory condition.

Category Treatments		L_2	L_3	Mean
T_1	38.88 (38.57)	58.89 (50.10)	72.22 (58.18)	56.67 (48.96)
				59.63 (50.72)
T ₃	50.00 (44.97)	67.76 (55.41)	77.76 (61.86)	65.17 (54.08)
T ₄	53.33 (46.89)	71.11 (57.47)	81.12 (64.24)	68.54 (56.21)
				62.22 (52.27)
Mean	46.24 (42.81)	64.89 (53.68)	76.23 (60.84)	
	Treatment (T)		1.32	
CD (0.05)	Category (L)		1.02	
	TxL		2.28	

Note: Figures in the parentheses are arc- sine transformed values

Germination capacity (%): Germination capacity also differs significantly due to seed size categories and presowing treatments. Among different pre sowing treatment, the mean germination capacity was maximum (74.08%) in T₄ (concentrated H₂SO₄ for 20 minutes followed by rinsing under running tap water) followed by T₃ (cow dung treatment for 7 days) while it was recorded minimum (64.08%) in T₁ (control). Among three seed category, large sized seeds (L₃) gave maximum germination capacity (83.56%) while minimum germination capacity (54.46%) was observed in small seed category (L1). Among various treatment combinations maximum germination capacity was recorded in T₄L₃ (88.88%) which was statistically at par with T₃L₃ (87.77%) whereas the lowest germination capacity was recorded in T₁L₁ (48.88%) treatment combination (Table 3).

Germination energy (%): Germination energy also differs significantly due to seeds size categories and pre-sowing treatments. The pre-sowing treatments T_4 and T_3 registered maximum germination energy with the value of 41.47% and 40.00%, respectively, whereas, it was recorded minimum in T_1 and T_2 with a value of 30.75% and 32.23%, respectively. On the other hand among various seed categories, L_3 registered maximum germination energy with a value of 47.11% and it was recorded minimum in L_1 seed category with a value of 25.34%. Among different treatment combinations, T_4L_3 performed best with highest germination energy (54.43%) which was statistically at par with T_3L_3 (52.21%) while T_1L_1 and T_2L_1 recorded the poorest germination energy with a value of 20.01% and 22.23%, respectively (Table 4).

Table 3: Effect of seed size and pre-sowing treatments on germination capacity (%) of *Cordia dichotoma* under laboratory condition

Category Treatments		L_2	L ₃	Mean
				64.08 (53.44)
				67.03 (55.32)
T ₃				72.22 (58.88)
T ₄				74.08 (60.12)
T ₅	55.55 (48.19)	72.22 (59.64)	82.22 (65.08)	70.00 (57.16)
Mean	54.46 (47.56)	70.44 (57.11)	83.56 (66.28)	
	Treatment (T)		1.29	
CD (0.05)	Category (L)		1.00	
	TxL		2.24	

Note: Figures in the parentheses are arc- sine transformed values

Table 4: Effect of seed size and pre-sowing treatments on germination energy (%) of *Cordia dichotoma* under laboratory condition

Category Treatments		L_2	L ₃	Mean
T_1				30.75 (33.41)
T_2				32.23 (34.38)
T ₃	28.89 (32.49)			
T_4	30.00 (33.3)	40.00 (39.22)	54.43 (47.53)	41.47 (39.97)
				35.55 (36.45)
Mean	25.34 (30.14)	35.55 (36.56)	47.11 (43.32)	
	Treatment (T)		1.00	
CD (0.05)	Category (L)		0.77	
	ΤxL		1.72	

Note: Figures in the parentheses are arc- sine transformed values

Seed weight varied significantly among different seed size categories, maximum seed weight was recorded in large seeds (L_3) and minimum in small seeds (L_1) . This may be due to the reasons for the difference in the seed weight may be ascertained due to seed size variation. The seed size usually reflects the comparative nutrient pool and energy of a seed which affects the future growth and development. The bigger seed size and more seed weight contain more amount of reserve food material in contrast to smaller seed (Athaya, 1985) [10]. These results are in line with the findings of Gurunathan *et al.*, (2009) [11] for *Jatropha curcas*. Similar results have also been reported for *Emblica officinalis*, *Syzygium cumini*, *Zizyphus mauritiana* and *Tamarindus indica* (Parameswari and Srimathi, 2009) [12] and *Pongamia pinnata* (Manonmani *et al.*, 1996) [13].

Seed viability found non-significant among different seed size categories though maximum seed viability was recorded in large seeds (L₃) and minimum in small seeds. Viability of seed is much affected by the stage of maturity reached at the time of its collection (Bonner, 1974) [14], its moisture content and the temperature to which it is exposed (Mathur *et al.*, 1984) [15].

Germination per cent varied significantly among seed size categories and pre-sowing treatments. The maximum germination was recorded for L_3 (76.23%) and T_4 (68.54%) while minimum germination was recorded in L_1 (46.24%) and T_1 (56.67%) (Fig. 1). Seed size has affected the seed germination significantly. Generally large seed germinate faster and more completely than smaller ones due to more endosperm nutrient pool. Hence variation in germination may be due to the significant differences observed in seed dimensions and weight. In general, it was recorded that germination per cent increased with the size and weight of seed.

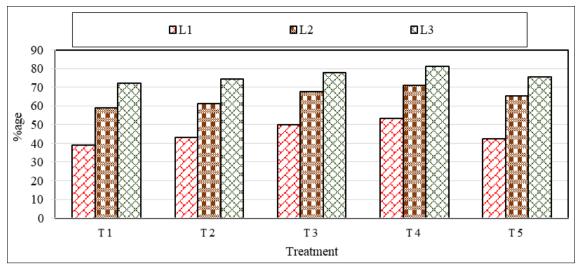


Fig 1: Graph analysis of Effect of seed size and pre-sowing treatments on germination (%) of Cordia dichotoma

The variation among the seeds size categories with respect to germination per cent have been earlier reported in *Sapindus emerginatus* (Venkatesh and Nagarajaiah, 2010; Suresha *et al.*, 2007) [16, 27], *Jatropha curcas* (Singh and Saxena, 2009) [18] and *Leucaena leucocephala* (Sharma and Sood, 1990) [19].

The seeds of Cordia dichotoma derived from the same lot responded differently to the different pre-sowing treatments under laboratory conditions. This may partly be explained on account of favourable condition in the germinator. Out of the five pre-sowing treatments studied, concentrated H₂SO₄ for 20 minutes followed by rinsing under running tap water (T₄) resulted in to higher germination. The concentrated H₂SO₄ soften the seed coat causing uniform inflow of water and unrestricted expansion of embryo. Increased germination have also been reported in Albizia lebbek and Cassia siamea (Agboola et al., 2005) [20], Quercus leucotrichophora (Gautam and Bhardwaj, 2001) [21]. The interaction between seed size and pre-sowing treatment, recorded the maximum germination per cent in large sized seeds (L₃) when treated with conc. H₂SO₄ for 20 minutes, similar observations were obtained in Albizia lebbek (Mutha et al., 2004) [22] and Albizia richardiana (Roy and Pathak, 1983) ^[23].

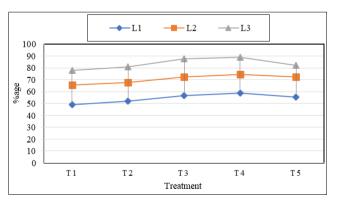
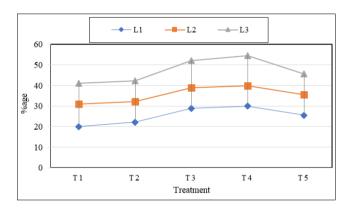



Fig 2: Graph analysis of Effect of seed size and pre-sowing treatments on germination capacity (%) of *Cordia dichotoma*

Fig 3: Graph analysis of Effect of seed size and pre-sowing treatments on germination energy (%) of *Cordia dichotoma*

Germination capacity also differs significantly due to seed size categories and pre-sowing treatments. The highest germination capacity was recorded in L_3 (83.56%) and T_4 (74.08%) while minimum in L_1 (54.46%) and T_1 (64.08%) (Fig. 2). The results are in harmony with the findings in *Eucalyptus globulus* (Humara *et al.*, 2002) [24] and *Eucalyptus citriodora* (Aguiar and Nakane, 1983) [25].

Germination energy also differs significantly due to presowing treatments and seeds size categories (Fig. 3). Highest germination energy was recorded in T₄ (41.47%) and L₃ (47.11%) while minimum in L₁ (25.34%) and T₁ (30.75%). Large size seed varied significantly with respect to germination energy. The results are in harmony with the findings reported in *Jatropha curcas* (Singh and Saxena, 2009) [18], *Albizia lebbek* (Kumar *et al.*, 2001) [26] and *Eucalyptus citriodora* (Aguiar and Nakane, 1983) [25]. However, the effect of pre-sowing treatments also varied significantly with reference to germination energy. The results are in harmony with those reported in *Ribes orientale* (Sharma *et al.*, 2005) [19] and *Terminalia bellerica* (Chakraborty *et al.*, 1992) [26].

Seed size is an important characteristic of seed quality as seed size has been shown to affect germination per cent, germination energy, and germination capacity, emergence rate, seed vigour, success of establishment, and growth. The seed size and pre sowing treatments often controls the germination and initial seedling growth. In seed size category, large seeds size gave maximum germinability parameters than the small seeds. Among per-sowing treatments, the highest germination per cent, germination capacity and germination energy was observed in concentrated H₂SO₄ for 20 minutes followed by rinsing under running tap water followed by cow dung treatment for 7 days. Pre-sowing treatment methods are employed for overcoming seed dormancy and used not only to ensure the rapid germination but it also decreases labour, cost and time for nursery production.

Acknowledgement

We are thankful to the forest department of Sidhi district providing seeds and authority of S.G.S. Govt. P.G. College Sidhi for providing faculty to carryout this work.

References

- Troup RS. Siliviculture of Indian trees. Nasik. Govt. of Indian Press. 1921;3:240.
- 2. Bahar N, Singh VRR. Seed source selection of *Cordia dichotoma* in Himachal Pradesh. Indian Forester. 2007;133(6):731-736.
- Schmidt L. Guide of handling of tropical and subtropical forest seeds. Danida Forest Seed Centre. Hunlobaeck, Denmark; c2000. p. 287.
- 4. Bhardwaj SD, Chakraborty AK. Studies on time of a seed collection, sowing and presowing treatments of *Terminalia bellirica* Roxb. and *Terminalia chebula* Retz. Indian Forester. 1994;120(5):430-439.
- Catalan LA, Macchiavelli RE. Improving germination in *Prosopis flexuosa* D.C. and *Prosopis alba* Griseb. With hot water treatments and scarification. Seed Science and technology. 1991;19:253-262.
- 6. Kobmoo B, Hellum AK. Hot water and acid improve their germination of Cassia siamea Britt. Seeds. Embryani. 1984;1:27-33.
- Khasa PD. Scarification of limba seeds with hot water, bleach and acid. Tree planters note. 1992;43(4):150-152
- ISTA. International rules for seed testing. Proceedings for International Seed Testing association. 1966;31:1-152.
- 9. Bonner FT. Seed testing. In: seeds of woody plants in The United States. Forest services, USDA, Washington DC; c1974. p. 136-152.
- 10. Athaya CD. Ecological studied of some forest tree seed I. seed morphology. Indian Journal of Forestry. 1985;8(1):33-36.
- 11. Gurunathan N, Srimathi P, Paramathma M. Influence of size polymorphism on seed and seedling quality of *Jatropha curcas*. Madras Agricultural Journal. 2009;96(1/6):62-66.
- 12. Parameswari K, Srimathi P. Seed size influencing seed quality in few tree crops. International Journal of Plant Sciences. 2009;4(1):208-211.
- 13. Manonmani V, Vanangamudi K, Rai RSV. Effect of seed size on seed germination and vigour in Pongamia pinnata. Journal of Tropical Forest Science. 1996;9(1):1-5.

- 14. Mathur RS, Sharma KK, Rawat MMS. Germination behaviour of various provenances of *Acacia nilotica* species indica. Indian Forester. 1984;110(5):435-499.
- 15. Venkatesh L, Nagarajaiah C. Effect of seed size on germination, viability and seedling biomass in *Sapindus emerginatus* Linn. Environment and Ecology. 2010;28(1):25-27.
- Wael A Marajan, Baha Eldin M Idris, Kauther S Ali, Abdalrahman A Muhamud. Effect of different NaCl concentrations on seed germination and early seedling growth of sugar beet (*Beta vulgaris* L). Int J Res Agron 2021;4(1):41-46.
 DOI: 10.33545/2618060X.2021.v4.i1a.47
- 17. Singh N, Saxena AK. Seed size variation and its effect on germination and seedling growth of *Jatropha curcas* L. Indian Forester. 2009;135(8):1135-1142.
- 18. Sharma S, Kumar S, Thakur KS, Negi PS. Study on effect of pre-sowing treatments on germination of *Ribes orientale* Desf. Seeds. Indian Forester. 2005;131(5):667-672.
- 19. Agboola DA, Ebofin AO, Aduradola AM, Ajiboye AA. Effect of pre-sowing treatments on the germination of seeds of two savannah tree legumes. Indian Forester. 2005;131(5):701-710.
- 20. Gautam J, Bhardwaj SD. Effect of seed size and presowing treatments on germination of ban oak (*Quercus leucotrichophora*). Indian Journal of Forestry. 2001;24(3):311-315.
- 21. Mutha N, Bohra MD, Burman U, Harsh LN. Effect of seed size and pretreatments on germination of *Albizia lebbek* (L.) Benth. Indian Journal of Forestry. 2004:27(1):11-14.
- 22. Roy MM, Pathak PS. Seed polymorphism and germination in *Albizia richardiana* King & Prain. My forest. 1983;19(2):89-95.
- 23. Humara JM, Casares A, Majada J. Effect of seed size and growing media water availability on early seedling growth in *Eucalyptus globulus*. Forest Ecology and Management. 2002;167(1/3):1-11.
- 24. Aguiar IB, Nakane JT. Seed size of Eucalyptus citriodora: influence on germination and vigour. Brasil Florestal. 1983;13(53):25-28.
- 25. Kumar M, Bhardwaj SD, Panwar P. Effect of pod and seed size on germination parameters of Albizia lebbek. Indian Journal of Forestry. 2001;24(4):496-499.
- Chakraborty AK, Pandey ON, Bhardwaj SD. Presowing treatment on seeds of *Terminalia bellirica*. Journal of Research, Birsa Agricultural University. 1992;4(1):95-98
- 27. Suresha NL, Balachandra HC, Shivanna H. Effect of seed size on germination, viability and seedling biomass in *Sapindus emerginatus* (Linn). Karnataka Journal of Agricultural Sciences. 2007;20(2):326-327.