

E-ISSN: 2706-8927 P-ISSN: 2706-8919 IJAAS 2019; 1(2): 183-185 Received: 12-08-2019 Accepted: 16-09-2019

Anupam Kumari

Research Scholar, Department of Chemistry, L.N.M.U., Darbhanga, Bihar, India

Analysis of 2-R5-oxo 5H6-Ethylcorloxy late 7-Phenyl-1,3,4-thiadiazolo-(3,2,-a) pyrizmizdine with amine

Anupam Kumari

Abstract

This paper present Synthesis of 2-R5-oxo 5-H-6-Carboxamind 7-Phenyl 1, 3, 4-thiadiazolo-(3, 2-a) Pyrimidine through response of 2-R 5-oxo 5-H 6. Ethyl Carboxilate 7-Phenyl-1, 3, 4 Thiadiazolo-(3,2-a) pyrimidine with amine. The structures of the mixes got are set NMR, 13C, IR-spectroscopy.

Keywords: 2-R5-oxo 5H6-Ethylcorloxy late 7-Phenyl-1,3,4-thiadiazolo-(3,2,-a) pyrizmizdine

Introduction

Consolidated subsidiaries of 1, 3, 4-thiadizolo[3,2-a]pyrimidinewere answered to have a broadspectrum of organic activity¹⁻⁴, including antibacterial, antitumor, fungicidal, and herbicidal properties. Be that as it may, thiadiazoles and their dense analogs are still in adequately contemplates. In continuation of the quest for substances having expanded capacity to penetrate through organic films of different irresistible species⁵⁻⁷ and, specifically, for the new antibacterial medications in these homologous arrangement of mixes.

The presentation of a substituent at position 6 of the 1,3,4-thiadiazolo [3, 2-a] pyrimidine framework effectively improves the physiological movement of the oleculef⁸⁻¹⁰. This substitution happens in the responses of 1,3,4-thiadiazolo [3,2-a] pyrimidine subsidiaries withelectrophiles¹¹⁻¹⁵. In the present work, we examined the conceivable outcomes of the synthesic of different subordinates of 1,3,4-thiadiazolo [3,2-a] pyrimidine.

In First we have synthesized 2-R5-oxo5-H6- Ethyl Carboxilate7-phenyl[1,3,4] thiadiazolo[3,2-thiadiazolo(1) and ethyl 2-formyl 3- okco 3- phenyl propanoate(2). (figure 1) And more2-R5-oxo5-H6-Ethyl Carboxilate 7-phenyl[1,3,4]thiadiazolo[3,2,-a] pyrimidine reacted with amine(4) until produced 2-R 5-oxo 5-H 6- Carboxamid 7-phenyl 1,3,4-thiadiazolo-[3,2-a] pyrimidine(5). (Figure 2)

In this regard synthes of 2-R 50x0 5-H 6-Carboxamid 7-phenyl -1,3,4-thiadiazolo[3,2-a] pyrimidinedo with The aim of 2-R 5-0x0 5-H 6-ethylcarboxylate 7-phenyl 1,3,4-thiadiazolo [3,2,-a] pyrimidine and amin in present solvent C²H⁵OH.

Result and discussion

First, we tried synthesis of 2-R 5-oxo 5-H 6-Carboxamid 7-phenyl -1,3,4-thiadiazolo [3,2-a] pyrimidine with 2-R 5-oxo 5-H 6-ethylcarboxylate 7-phenyl 1,3,4-thiadiazolo [3,2-a] pyrimidine and amin in various Alcohol. The reaction performed in the presence of Alcohol shown in Table-1, this reaction does not take a in the present of catalyst. To show the generality and applicability of this procedure, we treated a wide variety of 2-R 5-oxo

 Table 1: Optimization of the reaction conditions

Entry	Solvent	Time(h)	Yielda(%)
1	H_2O	8	20
2	CH ₃ OH	4	85
3	C ₂ H ₅ OH	4	95
4	C_3H_2OH	5	60
5	C ₄ H ₉ OH	6	50

^aYields refer to isolated pure products

Corresponding Author: Anupam Kumari Research Scholar, Department of Chemistry, L.N.M.U., Darbhanga, Bihar, India

90

Thiadiazol Amin Product Time(h) Yieldb(%) Entry NH₃ 82 1 6 2 NH₃ 8 85 7 3 NH_3 85 CONH2 4 NH_3 6 90 CONHO

Table 2: Synthesis of 2-R 5-oxo 5-H 6-Carboxamid 7-phenyl -1,3,4-thiadiazolo [3,2-a] pyrimidine with 2-R 5-oxo 5-H 6-ethylcarboxylate 7- phenyl 1,3,4- thiadiazolo [3,2-a] pyrimidine and amina

a Reaction were carried out with 2-R 5-0xo 5-H 6-ethylcarboxylate 7-phenyl 1,3,4-thiadiazolo [3,2-a] pyrimidine and amin b Yields refer to isolate pure products.

NH₃

Fig 1: Synthesis of 2-R7-phenyl 6-ethylcarboxylate 5-oxo 5-H 1,3,4-thiadiazolo [3,2-a] pyrimidine

Fig 2: Syntheses of 2-R 5-oxo 5-H 6Carboxamid 7-phenyl -1,3,4-thladlazolo [3,2-a] pyrimidine

5-H 6-ethylcarboxylate 7-phenyl 1,3,4-thiadiazolo [3,2-a] pyrimidine and amin in the presence of alcohol ethanol at 78°C and obtained the desirable products in good to excellent yields (Table 2).

Experimental

5

A mixture of 2-R 5-oxo 5-H- 6-ethylcarboxylate 7-phenyl 1,3,4-thiadiazolo [3,2-a] pyrimidine (1 mmol), amin (1 mmol) was strred magnetically at 78°C and the progress of the reaction was monitored by thin-layer chromatography (TLC). The reaction mixture was filtered. In all the cases, the product obtained after the usual work up gave satisfactory spectral data. 2-H 5oxo 5-H 6-Carboxamid 7-phenyl-1,3,4 thiadiazolo [3,2-a] pyrimidine: ¹H NMR (400 MHz, CDCI₃ δ ppm): 6 (s, 2H, NH2); 7.14-7.30 (5H,PH); 7.50 (S,H). ¹³C NMR (100 MHz, CDCI₃, δ ppm):118 (C), 126,4 (CH), 128(CH), 128.7(CH), 128.7(CH), 136.9(C), 140 (C), 162,1(C), 163(C), 168(C), 172,6.

Conclusion

All in all, the liquor has been utilized as a mellow, and profoundly proficient dissolvable framework for the advantageous readiness of 2-R 5-oxo 5-H 6-Carboxamid 7-phenyl - 1,3,4-thiadiazolo [3,2-a] pyrimidine in brilliant yields from 2-R 5-oxo 5-H 6-ethylcarboxylate 7-phenyl 1,3,4-thiadiazolo [3,2-a] pyrimidine and amin. Likewise minimal effort, recyclable dissolvable framework. The bit of leeway incorporate ease, mellow response condition and responses completed at room temperature with magnificent yields.

5

References

- Japan Patent Application No. 63-10794 (1987); Ref. Zh Khim 1989, 110402.
- US Patent No. 4742063(1987); Ref Zh Khim 1989, 10401.
- US Patent No. 4866064(1989); Ref ZH Khim 1991, 70384
- 4. Suiko I, Hayashida S, Nakatsu S. Agric Biol Chem 1982;46(11)2691-2695.
- 5. Sattorov SS, Kukaniev MA, Sanginov ZG, *et al.* Proc Rep Conf. "Advances in Chemistry and Chemical Technology". in Russian Dushanbe 2002, 142-144.
- 6. Gobum RA, Glennon RA. J Med Chem 1974;17(9):1025-1027.
- 7. Russo F, Santagati A, Santagati M, et al. Farmaco Ed Sc 1987;42(6):437-447.
- 8. Suiko M, Maekawa K, Agric Biol Chem 1977;41:2047.
- 9. Suiko M, Taniguchi E, Maekawa K, Eto M. Agric Biol Chem 1979;43:741.
- 10. Suiko M, Taniguchi E, Maekawa K, Eto M. Biol Chem 1979;43:747.
- 11. Sh. Shukurov S, Kukaniev MA, Nasyrov IM, Zakharov LS, Kamkhanov RA, Zh Obshch ghim. (63, 2320 [Russ. J Gen Chem 1993, 63 (Engl. Transl.)]

- 12. Akbarzadeh A, Soleymani R, Taheri M, Ali MKC, Orient J Chem 2012;28(1):153-164.
- 13. Moradivalikbori R, Hozhiboevy Y, Heidarnezhad Z, Orient J Chem 2013;29(4):1647-1650.
- 14. Sh. Shukurov S, Kukaniev MA, Nasyrov M, Zakharov LS, Kamkhanov RA, lay Akad Nauk Set Khim 1994, 908 [Russ Chem BAIL 1994, 43, 854 (Engl. Transl.) L.
- 15. Suichi Y, Tamotsu M, Shunzo A, Hiroyuki F, Hiroo M. Mikio M, *et al.* Chem and Pharm Bull 1992;40:3391.