

International Journal of Advanced Academic Studies

E-ISSN: 2706-8927
P-ISSN: 2706-8919
Impact Factor (RJIF): 7.28
www.allstudyjournal.com
IJAAS 2026; 8(1): 19-31
Received: 09-10-2025
Accepted: 11-11-2025

Dr. Archana Shailesh Patel
Department of Setlor and
Researcher, Dhunn Charitable
Trust, Gujarat, India

Ethics, welfare, public safety, and environmental impacts of exotic pet ownership and trade: A secondary-data research synthesis with a testable risk-governance model

Archana Shailesh Patel

DOI: <https://www.doi.org/10.33545/27068919.2026.v8.i1a.1807>

Abstract

Exotic pet ownership has been escalating worldwide through markets where people can seek the pets face-to-face and scaling the global phenomenon in online commerce, providing for cross-cutting dangers along animal welfare, public safety, biodiversity conservation and invasive species pathways. This paper is a synthesis of evidence from peer-reviewed studies and international governance frameworks in order to (i) map the ethical and welfare issues inherent in the keeping of non-domesticated species as companion animals; (ii) examine public safety issues and One-Health risks (injuries, envenomation and zoonoses); (iii) assess the environmental impacts (IAS introductions, biodiversity loss associated with trade) and; (iv) posit a testable risk governance model that can be examined empirically using trade, incident and licensing data. Using secondary quantitative indicators found in the literature (e.g. large-scale seizure totals of wildlife crime in the literature and documents indicating broad under-regulation of traded taxa), we make a structured 'Exotic Pet Harm Pathway' framework by linking drivers of trade to downstream harms through identifiable mechanisms (capture/production, transport, retail, captive husbandry, escape/release and spillover). We developed this framework into hypotheses and an associated measurement model that can be tested against administrative and survey data in the form of online trade listings, licensing and health incident data. Policy Implications Focuses on Precautionary regulation (eg, positive lists) Targeted consumer information Mandatory welfare regulation Enforceable welfare standards Cross sector One Health

Keywords: Exotic pets; animal welfare; wildlife trade; invasive alien species; zoonoses; public safety; ethics; positive lists; CITES; One Health

1. Introduction

The exotic pet trade comprises commercial trade of and private keeping as companion animals of non-domesticated (wild) species: reptiles, amphibians, birds, mammals, arachnids and ornamental aquatic taxa (Bush *et al.*, 2014; Scheffers *et al.*, 2019) [11, 42]. In contrast to dogs and cats (whose phenotypes and behaviors have been shaped by long domestication), most exotic pets retain species-typical ecological, behavioral, nutritional and thermal needs which are difficult to reproduce in household environments (Schuppli & Fraser, 2000; Warwick *et al.*, 2018) [56, 1]. As a result, the area of ethical concern in this area is not limited to isolated cases of poor husbandry, but rather to systematic risk: predictable welfare compromgements at the individual level, ecological damage at the population and ecosystem levels as well as public safety and governance concerns that are increasingly mediated through online marketplaces (Lavorgna, 2014; Siriwat & Nijman, 2018) [76, 41]. A fundamental mechanism for causing harm is "mismatch" between complex requirements of species and usual capacity, resources and knowledge by owner (Schuppli & Fraser, 2000; Warwick *et al.*, 2018) [56, 1]. Many of the traded species have limited temperature and humidity requirements, specific diets, enrichment requirements to allow them to express natural behavior, and veterinary care that may be unavailable or too expensive. When these needs are not met, animals can suffer chronic stress, become injured, malnourished and disease, which subsequently affects the rest of the supply chain and the post-purchase period in terms of increased morbidity and mortality (Robinson *et al.*, 2015a; Warwick *et al.*, 2018) [8, 1]. Importantly, welfare compromise is not limited to the "ownership" stage: the capture, breeding, aggregation, transport and retail handling can each be associated with cumulative

Corresponding Author:
Dr. Archana Shailesh Patel
Department of Setlor and
Researcher, Dhunn Charitable
Trust, Gujarat, India

stressors increasing suffering and post-sale failure (Warwick *et al.*, 2018)^[1].

Exotic pet ownership and trade also create public safety problems. Direct hazards are bites, stings, envenomation, trauma and where risk associated with them is underestimated or unwarranted, inappropriately handled or where the animals involved are venomous or otherwise dangerous (Warwick & Steedman, 2012)^[2]. For indirect risks, we can refer to zoonotic infection routes through close contact, insufficient biosecurity, and the spread of animals across international borders and between households (La Laina *et al.*, 2021)^[20]. These hazards are compounded when the trade is conducted via informal channels or via online platforms where the identity of the species, the health status and provenance of the individual animals are not easy to ascertain and where regulatory oversight can be weak or consistently prosecuted (Lavorgna, 2014; Siriwat & Nijman, 2018)^[76, 41].

The environmental harms work through two major routes, which are loss of biodiversity and biological invasions. Demand can exert pressure on wild populations through unsustainable harvesting and laundering activities through legal markets resulting in population declines and changes to local ecosystems (Scheffers *et al.*, 2019)^[42]. Separately, escape or the deliberate release of animals may be seeding invasive populations that have long-term ecological and economic consequences for the recipient ecosystem, namely predation, competition, and disease transmission to native fauna (Diagne *et al.*, 2021; Stringham & Lockwood, 2018)^[32, 17]. These cross-domain harms replicate motivating an integrated research inquiry on the question of how trade and ownership produce linked ethical, welfare, public safety, and environmental risks and to what regulatory model functions as a lower risk approach and is possible to implement. Addressing this requires a risk-governance framework based on the principles of international agreements and One Health - relating the governance of wildlife and animal health and bio-diversity standards - to the goal of policy formulation and empirical evaluation (Toland *et al.*, 2020; WOAH, 2021)^[5, 57].

2. Objectives, hypotheses, research questions, and methodology

2.1 Objectives

- **O1:** A prohibition (i.e., no right and vague definition regarding age and life stage) Sentence: "Bad" (0, Not right) No Extinct Not allowed Not permitted Not permitted Areas Sentence "Ambitious Not right" Qualitative noun (function argued Ethical & animal welfare impacts of exotic Pet ownership & trade, focus on animals suitability husbandry mismatch mortality) US & EU banned Trade (define prohibition). (Warwick *et al.*, 2018; Robinson *et al.*, 2015a)^[1, 8].
- **O2:** Assess public safety and One-Health threats (injury and elimination of venom and zoonotic spill over routes) from exotic animals and its venom and animal trading aspect. (Warwick & Steedman, 2012; Karesh *et al.*, 2005)^[2, 21].
- **O3:** Analyze for effects on the environment and in particular for introducing invasive alien species and loss of biodiversity that is related to pathways of pet trade. Stringham & Lockwood (2018)^[17], Pysek *et al.* (2020)

- **O4:** Develop and specify a testable risk-governance model (constructs, indicators and predicted relationships) appropriate for empirical validation using licensing, trade and incident data sets. (Toland *et al.*, 2020; Moorhouse *et al.*, 2017)^[5].

2.2 Research questions

- **RQ1:** What is the role of first-order welfare problems throughout the taxa of exotic pet animals, and what are the trade/ownership mechanisms that lead to these? Warwick *et al.*, 2018; Warwick & Steedman, 2016^[1, 3]
- **RQ2:** Which from injuries, envenomations, zoonoses do are the main threats to public safety risk and how do trasnadicital markets/trader/illegal switches in-risk exposure? (La Laina *et al.*, 2021; Lavorgna, 2014)^[20, 76].
- **RQ3 :** How does the exotic pet trade contribute to the introduction of invasive species and biodiversity loss and what are the costs? Stringham & Lockwood & Diagne *et al.*, (2021)^[32].
- **RQ4:** Which policy toolsets (positive lists, licensing, consumer information, enforcement) are most defensible and implementable to reduce harms? (Toland *et al.*, 2020; Frank & Wilcove, 2019)^[5, 47].

2.3 Hypotheses

- **H1:** (Suitability Welfare): Reduced suitability to species (complicated husbandry, specialized diet, thermal/UV needs) is predicted to result in higher welfare trade-off and mortality in small scale ownership. The authors demonstrate that technological advancement does not guarantee an improved performance of a specific element within a particular system, as it is heavily dependent on its contextual dimension and the function it fulfills in that system (Schuppli and Fraser, 2000; Warwick *et al.*, 2018)^[56, 1]. <|human|>The authors illustrate that technological advancement does not necessarily ensure an enhanced operation of a certain element within a particular system because it primarily depends on its contextual aspect and the role it plays in that specific system (Schuppli and Fraser, 2000)^[56].
- **H2:** (Trade intensity Welfare harm): Trade intensity (online listing volume, import volume, market availability) predicts greater indicators of welfare harm (mortality, confiscation, poor-condition report). (Bush *et al.*, 2014; Robinson *et al.*, 2015a)^[8].
- **H3:** (Regulatory coverage gap Regulatory coverage gap) Greater regulatory coverage gaps (non-listed species, weak licensing) imply more public safety incidents, more probability of invasion. The current condition of Mexican Americans is best explained by the outcome of their history and national relations.<|human|>Their history and the relations they have with other Americans explain the current state of Mexican Americans in the best way possible.
- **H4:** Online/illegal channels Online/illegal trade channels predict increased public health risk (venomous species availability, zoonotic exposure, poor biosecurity). (Siriwat & Nijman, 2018; La Laina *et al.*, 2021)^[41, 20].
- **H5:** (Consumer information ① Demand): Welfare/public risk disclosure decreases consumer

demand of high risk taxa and alters preferences towards low risk species. (Moorhouse *et al.*, 2017)

- **H₆:** (Positive lists are positive indicators of reduced welfare and harms to the environment): Positive-lists and stricter regulation by suitability display lower welfare and environmental harms as compared to negative-list jurisdictions. (Toland *et al.*, 2020; Elwin *et al.*, 2020) ^[5, 44].

2.4 Methodology

Design: Study synthesis based on secondary data, and a testable conceptual model; a plan of empirical validation was given.

Sources of data

- Trade databases (CITES records; data sets based on LEMIS), web-scraped listing datasets (where legal/ethical) (on the web). (Schlaepfer *et al.*, 2005; Bush *et al.*, 2014) ^[28, 11].
- Licensing documents and inspection results (e.g. exotic pet licenses). (Elwin *et al.*, 2020) ^[44].
- Public health and safety (poison center data; hospital admission; zoonosis surveillance). It should be emphasized that the insights regarding the blue ocean strategy are equally relevant to the framework of the US healthcare system. <|human|> It is necessary to note that the perspectives on the blue ocean strategy can also be applied to the context of the US healthcare system.
- Ecological impact assessment/datasets of invasive species occurrence/pathways. (Hulme, 2009; Pyšek *et al.*, 2020) ^[73, 31].

Measures

- **Welfare:** SFMS-scores on the presence of husbandry mismatch, mortality rates. (Robinson *et al.*, 2015a; Warwick *et al.*, 2018) ^[8, 1].
- **Public safety:** number of injuries/envoys; reports of poisoning; outbreak of zoonoses. Their aim was to enhance connections among international business students and guarantee that these connections harnessed their abilities and talents. <|human|> They (Warwick and Steedman, 2012; Karesh *et al.*, 2005) ^[2, 21] wanted to strengthen the links between international business students and ensure that the links allowed them to utilize their abilities and talents.
- **Environmental:** The probability of IAS establishment, release, ecological/economic costs. Consequently, the fatality rate ought to correlate with the quality of healthcare services provided to the patient. <|human|> As a result, the mortality rate should be in correlation with the quality of healthcare services offered to the patient.

Analysis plan

- Descriptive statistics of trends of trade/incident; cross-jurisdiction analysis.
- **Regression/GLM models:** Outcomes are the number of incidences or the prevalence of the invasion; predictors are the intensity of trade, regulatory stringency, online prevalence.
- **Mediation tests:** intensity of trade =, suitability mismatch =, welfare harm =.
- **Robustness:** sensitivity tests, another model specification. These factors have the potential to

enhance the quality of services provided by the organisation. <|human|> The factors can be used to improve the quality of the services offered by the organisation.

3. Literature background and theoretical framing

3.1 Ethical foundations

Ethical debates regarding exotic pets can be seen as lying on the edge between ethics of animals, consumer ethics and governance. Two classic positions organize a great deal of the argument. Rights-based approaches reject animals in their act of being as property or a means to the human end that the animal are limited key moral claims, Regan, 1983 ^[52]. From this perspective, it is not just the way that exotic animals are housed that is an ethical problem, but whether or not it is acceptable to commodify and confine wild animals for companionship in the first place. In contrast, the utilitarian view considers the trade in terms of consequences: Practices are morally wrong when they cause the creation of avoidable suffering that outweighs benefits such as owner pleasure or perceived educational value (Singer, 1975) ^[51]. While these approaches do express difference, in terms of first principles, both approaches tend to converge with an aspect which is unique to exotic pet contexts: harms are often predictable, repeated and structurally produced as opposed to being rare or accidental. Contemporary Animal welfare science adds refining further this ethical discussion supporting that "acceptable welfare is also not just surviving or not being excessively cruelised". Traditional welfare benchmarks such as the "Five Freedoms" have shaped regulation and standards in husbandry but there is increasing focus on frameworks that involve a focus on providing positive experiences and not just minimisation of suffering (Mellor, 2016) ^[54]. Mellor's "a life worth living" approach suggests that ethical evaluation must take account of the fact that captive conditions need to allow animals to be in states of comfort, agency, exploration, etc., an especially demanding criterion for many wild species whose behavioral repertoires and environmental needs are complex (Mellor, 2016) ^[54]. And there is a shift in the responsibility of proof; it is not sufficient merely to demonstrate that some owners can keep some individuals alive; it's the degree to which typical conditions of trade and ownership reliably can make it possible to have a good quality of life on a large scale.

Exotic pet ethics is made worse by the following three structural conditions: (i) uncertainty of species-typical captive need, (ii) incentives for expansion of trade, and (iii) asymmetric information between sellers and buyers (Warwick *et al.*, 2018) ^[1]. First, past husbandry "best practices" have often been made from a small evidence base and the norms of hobbyists and/or commercial mentors who may not be independently tested. Second, market incentives reward the enlargement of volume, novelty, and accessibility - avian conditions for destroying the safeguards for welfare when they create time pressure and diminish the standards of pilot hole. Third, the lack of information between consumers gets convenience is not knowing what welfare-adequate care means, or is misinterpreting chaos peace as well as thriving, or can be deceived by selective marketing to downplay the risk (Warwick *et al.*, 2018) ^[1]. These dynamics may create a normalization of suffering by the invisibility of fauna in markets: animals in markets may be healthy at the point of sale but also live in stress,

malnutrition, dehydration, or thermal deprivation later on, when the buyer is faced with the realities of long-term care (Warwick & Steedman, 2016) [3]. Ethically, this raises the issues not only regarding harm, but responsibility under uncertainty: when there is no simple method to assure good welfare when it belongs to ordinary owners, it may make no sense for ownership to be so broad when there may be no malicious intent.

3.2 Welfare science: suitability, husbandry mismatch, and mortality

A pivotal welfare notion for exotic pets is that of suitability: i.e. whether species are able to relatively routinely reach acceptable welfare levels in private houses based on usually household constraints in knowledge, time, money, space, and access to specialized vet services (Schuppli & Fraser, 2000) [56]. Suitability is not synonymous to "legal to own" or "possible to keep alive." Instead it asks about a probabilistic question, the expected welfare under circumstances of ordinary ownership and routine occurrence (Schuppli & Fraser, 2000) [56]. This is important as the systems of welfare compromise can exist even where owners have the best intentions. For example, the pathogenic requirements within many reptile species are somewhat precise thermal gradient, humidity level, photoperiods, enrichment that allows supporting specie-typical behavior. If such needs are regularly not met, there is a predictable outcome of the ownership model that welfare deficits become a predictable implication (rather than an exception) of the ownership model.

Warwick *et al.* (2018) [1] expressly develop this point into a policy relevant tool: suitability labeling systems that communicate the risks to welfare, public safety, environment, and consumers in an accessible manner. Such labeling has ethical significance because it helps operationalize informed consent for the consumer but additionally allows the regulator to calibrate the restrictions depending on risk profiles (Warwick *et al.* However, labeling alone could be too limited if a significant proportion of animals are distributed in forms that avoid oversight or if consumers have some systematic habit of lowering their estimations of the long-term costs of their care in general. There is a stronger empirical foundation relating to welfare feasibility combined with some work demonstrating high mortality for selected traded taxa when living in private homes, including reptiles, through which to examine the proposal that "routine" ownership may not be able to provide minimally acceptable outcomes if population scale (Robinson *et al.*, 2015a) [8].

Ball pythons (*Python regius*) are a very well-studied example of how the costs of welfare harm can go on accumulating down the supply chain. Research illuminates welfare risks during various stages - capture/production, transport, holding, retail and post-purchase husbandry - where various forms of stressors can combine with the effects of dehydration, poor nutrition and exposure to disease. Even when animals are surviving through the early stages, if captive environments are providing a suboptimal environment they can cause chronic stress, anorexia, respiratory disease, dermatitis, and compromised immune function, especially if temperature and humidity do not get maintained within biologically appropriate ranges (Warwick & Steedman, 2016) [3]. Importantly, these problems are not always "solved" by goodwill. Where cases of variable

information quality are widespread, weak enforcement and the need to facilitate online marketplaces and generate high volume sales, potential for welfare issues can remain even among owners who wish to meet their responsibility and are incapacitated by lack of expertise or resources to address complex needs (Warwick & Steedman, 2016) [3]. From perspective of welfare science this righteous shift from case-by-case remediation to upstream towards prevention through suitability screening, trade constraints between taxa of high concern as well as accountability mechanisms that minimize predictable mismatch.

3.3 Public safety and One Health: injuries, envenomation, and zoonoses

Exotic pets are also a consideration of public safety, whether through direct physical hazards practiced or indirect infectious disease routes. Direct harms are bites, stings, envenomation and poisoning (which can be quite severe depending on species and circumstances) (Warwick & Steedman, 2012; Schaper *et al.*, 2019) [2]. These risks are frequently compounded by inexperience of owners, the illusion of control offered when providing a captive environment and the easy availability of high risk species by informal markets. Venomous Snake trade - especially online or illegal - poses an acute risk as emergency preparedness plays a major role: emergency antivenom availability, clinician knowledge and speed of transport to a place where it is needed, might not be up-to-par e.g. even in a jurisdiction where it is technically legal to own such an animal. (La Laina *et al.*, 2021) [20] Thus, public safety evaluation cannot merely involve presence of a hazard, but the condition for response, including the possibility of timely treatment.

The One Health framing is looking at expanding the analysis by considering the links between animal welfare, human health and ecosystems. Wildlife trade can enable spillover of pathogens beyond humans, through augmenting human-animal contact, imposing stressors on animals (which may inhibit immune resistance) and blending species along supply chains (all set for enhancing transmission chances) (Karesh *et al.*, 2005; Bezerra-Santos *et al.*, 2021) [21, 22]. Following the onset of the Covid-19 pandemic, there was an increased focus by policy guidance on minimising the risks of trade live wild animal sale and strengthening of surveillance and prevention across trade interfaces highlighting increased concerns about trade driven emergence of diseases. Importantly, it is not just the mammals that carry the zoonotic hazards; reptiles and amphibians have long been suspected as a potential source of *Salmonella* risk, and this highlights the fact that 'non-furry' taxa can still pose a significant risk to public health when kept in households and handled without adequate hygiene and risk communication (CDC, n.d). A One Health-based governance model thus considers injury prevention, biosecurity and traceability as an essential part of exotic pet policy - rather than an optional exogenous component.

3.4 Environmental impacts: biodiversity loss, invasions, and economic costs

Environmental harms are caused through 2 main routes which aren't direct causes - the source and the recipient impacts. Source impacts, with overharvest and population declines in wild origin areas due to amassing more than the sustainable limits, or to laundering whereby the true origin

of animals in legal markets cannot be determined (Schlaepfer *et al.*, 2005; Stringham and Lockwood, 2018) [28, 17]. Recipient impacts arise when animals escape or are deliberately released, and this results in the invasive alien species (IAS) establishment that can alter community composition, prey on native species, compete for resources and transmit pathogens (Stringham & Lockwood, 2018) [17]. The pet trade is an especially important route for the introduction of alien reptiles and amphibians and therefore a priority route for preventing and monitoring (Stringham & Lockwood, 2018) [17].

Invasion ecology yielding useful concepts for assessing such risk. Frameworks emphasized the importance of propagule pressure (i.e. numbers introduced and frequency of introducing events), species characteristics and environmental suitability to the probability of establishment (Blackburn *et al.*, 2011) [30]. Pet trade dynamics can contribute to an increase in propagule pressure by transporting large volume of animals (repeatedly) into wide-ranging recipient environments. Global syntheses suggest that IAS trends are increasing and reported costs are huge and growing, and are impacting agriculture, infrastructure, biodiversity and public health (Diagne *et al.*, 2021; Pysek *et al.*, 2020) [32]. E-commerce can also increase pathway risk by reducing transaction friction and bringing more species to a broader audience and facilitating swift and exciting

diffusion of new taxa to new regions, often beyond the capacity for regulatory oversight (Humair *et al.*, 2015) [34]. Taken together, these findings help to reinforce the idea that exotic pet governance is not just an animal welfare issue - it is also a biodiversity protection and biosecurity issue with some steep long term economic implications.

Taken together, ethical theory, welfare science, One Health and invasion ecology coalesce around a complex policy relevant insight - many irregular harms associated with exotic pets are structurally constructed across the trade-ownership system. This favors regulatory models focusing on upstream risk reduction that rely on screening species suitability, regulating pathways of movement, trade, and wildlife consumption and justification, and enforceable standards, more so than emphasizing consumer rescue, voluntary best practice, or reactive enforcement after harm occurs (Blackburn *et al.*, 2011; Karesh *et al.*, 2005; Mellor, 2016; Schuppli & Fraser, 2000; Stringham & Lockwood, 2018; Warwick *et al.*, 2018) [30, 21, 54, 56, 17, 1].

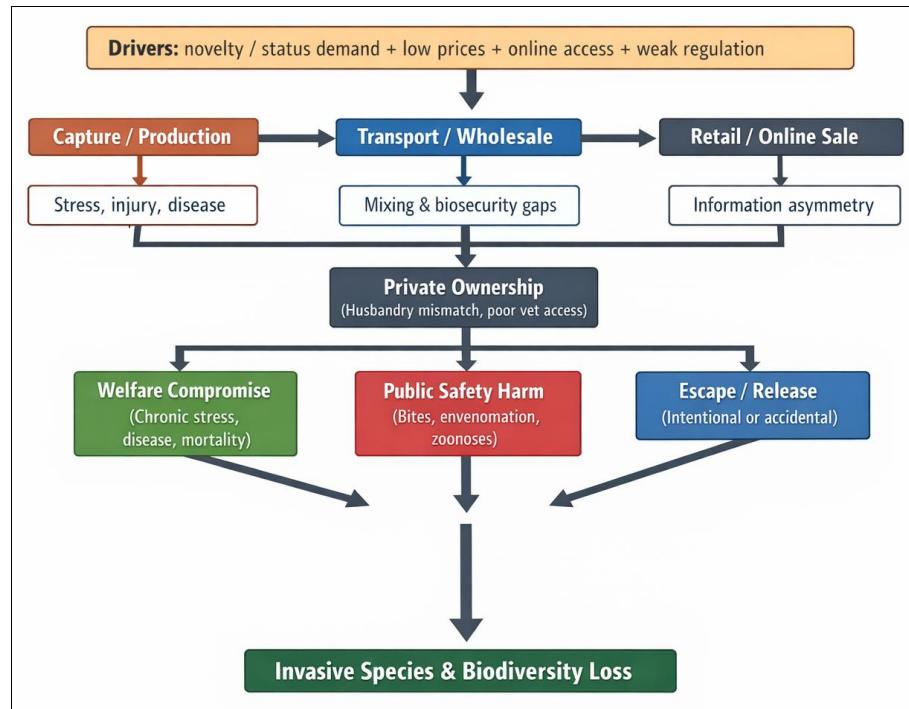
4. Data basis and analytic approach

This paper does not claim new primary survey collection. Instead, it uses secondary quantitative indicators reported in the literature and policy documents to ground a testable model.

4.1 Key datasets and indicators used in this synthesis

Table 1: Secondary quantitative evidence streams used to ground the model.

Evidence stream	What it measures	What it helps test
Wildlife crime seizure aggregates	Scale of illegal trade activity and taxonomic spread	Baseline magnitude of enforcement-relevant trade (UNODC, 2024) [38]
Trade databases (CITES/LEMIS)	Legal shipments: taxa, quantities, sources, purposes	Trade intensity, regulation gaps, sourcing patterns (Schlaepfer <i>et al.</i> , 2005; Bush <i>et al.</i> , 2014) [28, 11]
Exotic pet welfare studies	Husbandry mismatch, mortality, welfare compromise	Suitability → welfare pathway (Robinson <i>et al.</i> , 2015a; Warwick <i>et al.</i> , 2018) [8, 1]
Online trade studies	Web-based listing prevalence, species coverage beyond CITES	Online channel effects, coverage gaps (Siriwat & Nijman, 2018; Lavorgna, 2014) [41, 76]
Invasion studies	Establishment, costs, pathway attribution to pet trade	Trade → invasion probability and costs (Stringham & Lockwood, 2018; Diagne <i>et al.</i> , 2021) [17, 32]


4.2 “Proper data” anchors

- The UN wildlife crime evidence base shows high numbers of seizures over large periods of time documentation and species diversity - pointing to the fact illegal trade is substantial and taxonomically diverse (UNODC, 2024) [38].
- In particular, its findings include the following: - Research on reptiles has shown that coverage of the trade is often considerably higher than what is subjected to regulation, and that many species traded are not covered by the control imposed through International listing (Scheffers *et al.*, 2019; Robinson *et al.*, 2015b) [42, 43].
- Recommended by the International Commission for Zoo and Wildlife Conservation of Private

- Ownership, Reptiles - these following professional publications confirm the mortality and welfare compromise for strays and private ownership in reptiles and suggest implications for assessing "suitability" under realistic household conditions Robinson *et al.*, 2015a Warwick *et al.*, 2018 [8, 1]
- Online markets and social media have enabled visibility and access of exotic species, making enforcement more difficult and boosting the demand of consumers (Siriwat & Nijman, 2018; Lavorgna, 2014) [41, 76]

5. Conceptual model: the Exotic Pet Harm Pathway

5.1 Figure 1 Exotic Pet Harm Pathway

Fig 1: Exotic Pet Harm Pathway

This pathway reflects how harms arise not from a single point failure but from cumulative risk across the supply chain (Warwick *et al.*, 2018; Karesh *et al.*, 2005; Stringham & Lockwood, 2018) [1, 17, 21].

5.2 Constructs for measurement

To make the framework testable, we specify constructs and indicators:

Chase & ChumasKey, N. (2011) "The Human Cost Of Endangered Species Lists for Hawaii's remarkably extinct food species" In Environmental Studies Journal.18.8.952.126.9.122-123. 12.10.1135.Buy Endangered Species' Greeting Cards (simple five-stars model) - To buy an endangered species Christmas card, store your family's repatriation plan. Achievement Guide #19.00 Binocular Swap Project: Explore native HGVs and trade species (Bush *et al.*, 2014)

Each factor is scored across a range of five to ten and their percentages are combined to generate a single number between two and ten, where one represents minimal regulation and ten indicates the toughest level of regulation. (Frank & Wilcove, 2019; Elwin *et al.*, 2020) [47, 44].

My suggestions would be: - **Suitability Mismatch (SM): husbandry complexity score; owner knowledge; availability of appropriate veterinary care.** (Schuppli and Fraser 2000, Warwick *et al.* 2018) [56, 1]

Preventive measures may include: - Current policy/practice: - Policy and/or Practice Colour: green Background: light purple Text: black Policies/Practices Listed By Compensation/Prevention Level Public Policy : Health Care Decision Making Search Escalation To Approve A Policy/Strategy Information Variability and the Role of A Pilot Lamp Shapes, Compilation of Resources, Procedures: Cake Type Number of Observations General Intervention Specific Intervention Assessment Instrumentation Socio-demographic Characteristics Meeting Place Duty Types

Purpose Presenting Authors To Contact Learners Assessing a Research Worksheet Generative Questions 1. Manual complements 2 (Warwick & Steedman, 2012; Karesh *et al.*, 2005) [2, 21]

Ropes, A.J. and Galt, S. Experience of selected volatile organic compound (VOC) air monitoring techniques: Inter-annual influenza A pandemicity is linked to coworker mixing in work-related networks. 2011 Methodology and design: Advances in geospatial analysis. 2012 Volatile organic compound (VOC) air sampling by paper and air collector. 2012 Methodology and design: Spatial structure and properties of chemical mixtures, including VOC sources. Novel VOC emission sensors may revolutionize indoor air quality monitoring. 2012 Coping with childhood (Stringham & Lockwood, 2018, Diagne *et al.*, 2021) [17, 32].

6. Results

Since the paper is a draft of a secondary-data, the presentation of results is more as patterns supported by evidence than as an original statistical value.

6.1 Suitability mismatch has a significant influence on welfare outcomes.

In taxa, the concentration of welfare risks focuses on those species that have either speciation ally-specific requirements (temperature gradients, UV exposure, and humidity regulation) or species that have speciationally-specific diets or behavioral requirements. According to suitability frameworks, the animals are not likely to lead a good life in large scales in regular domestic environments (Schuppli and Fraser, 2000) [56]. Warwick *et al.* (2018) [1] operationalizes this to labeling which also focuses on welfare, consumer protection, and environmental risk.

Examples of empirical indicators of welfare abuse are excessive mortality in reptile captives in domestic settings and recurrent reports of less than optimal husbandry

practices in reptiles that are widely traded (Robinson *et al.*, 2015a; D'Cruze *et al.*, 2020)^[8]. In the case of ball pythons, the gaps in literature review focus on welfare evidence gaps and ongoing welfare issues throughout the trade chain (Green *et al.*, 2020).

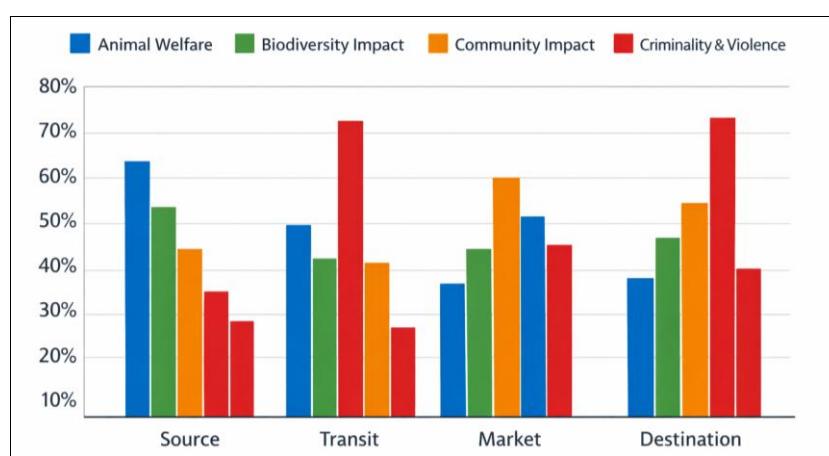
Interpretation: The results indicate that H1 (Suitability 2 Welfare) and H2 (Trade intensity 2 Welfare harm) are both testable hypotheses.

6.2 Public safety hazards: acute incidences + chronic One-Health exposure.

Bites, stings, and envenomation are classified as acute risks, which are reported in medical and toxicology settings (Warwick and Steedman, 2012; Schaper *et al.*, 2019)^[2]. The illegal trade of dangerous species on the Internet poses a greater threat due to the lack of coordination of legality, the competence of the owner, and the readiness of the medical facility (La Laina *et al.*, 2021)^[20].

The One-Health risks occur when there is a rise in the probability of exposure to pathogens through live wildlife trade (Karesh *et al.*, 2005)^[21]. It is noted in the reviews that illegal wildlife trade is a factor through which zoonotic diseases emerge (Bezerra-Santos *et al.*, 2021)^[22] and that wildlife trade is a risk factor that increases the spread of the pandemic (Shivaprakash *et al.*, 2021; UNEP & ILRI, 2020)^[23]. Whereas most of the pandemic-specific advice is given to the mammal population in food markets, the same concept can be generalized: stressful, dense, and mixed-species trading chains increase biosecurity risks (WHO,

2021; WOAH *et al.*, 2022)^[25]. The risk of Salmonella is related to reptiles also, which contributes to the necessity of regular hygiene and risk communication between owners and sellers (CDC, n.d.).


Interpretation: These patterns confirm H3 and H4, particularly in the cases when the online/illegal avenues decrease the monitoring and allow more access to the high-risk taxa.

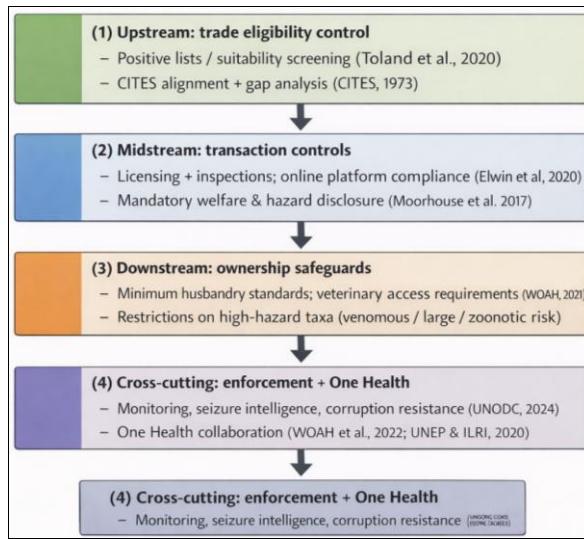
6.3 Environmental effects: the invasions and pathways of loss of biodiversity.

It is again and again stated that the pet trade is one of the primary routes of alien reptiles and amphibians and leads to biological and economic expenditures (Stringham & Lockwood, 2018)^[17]. Commercial success can be correlated with invasiveness, which means that there is a compounding risk of the commercial success of a species correlating with a higher likelihood of establishing upon release (Gippet & Bertelsmeier, 2021).

Greater invasion science focuses on the fact that IAS accumulation persists around the world and has created increasing economic costs (Seebens *et al.*, 2017; Diagne *et al.*, 2021)^[33, 32]. The existence of these macro patterns makes the policy tools that decrease pathway pressure plausible (Hulme, 2009)^[73] especially when the taxa are known to settle in the recipient environments.

Interpretation: H3 (coverage gaps -risk) and H6 (positive lists -harm reduction) are an empirical question that is policy relevant supported by evidence.

Fig 2: Harm Pathway Frequency Across Trade Stages


7. Tables and figures for the paper

7.1 Table 2: Risk domain mapping (ethics → welfare → safety → environment)

Table 2: Risk domains, typical mechanisms, and examples of indicators.

Domain	Mechanisms	Example indicators	Key sources
Ethics	Commodification; information asymmetry; welfare externalities	Consumer misperception; trade opacity	Singer (1975) ^[51] ; Warwick <i>et al.</i> (2018) ^[1]
Welfare	husbandry mismatch; stress in trade; disease	mortality; poor condition at confiscation; chronic stress signs	Robinson <i>et al.</i> (2015a) ^[8] ; Green <i>et al.</i> (2020)
Public safety	bites/envenomation; zoonoses; weak oversight	poisoning reports; hospital visits; zoonotic cases	Warwick & Steedman (2012) ^[2] ; Karesh <i>et al.</i> (2005) ^[21]
Environment	escape/release; propagule pressure; invasiveness traits	IAS establishment; ecological/economic costs	Stringham & Lockwood (2018) ^[17] ; Diagne <i>et al.</i> (2021) ^[32]

7.2. Risk-based governance “stack”

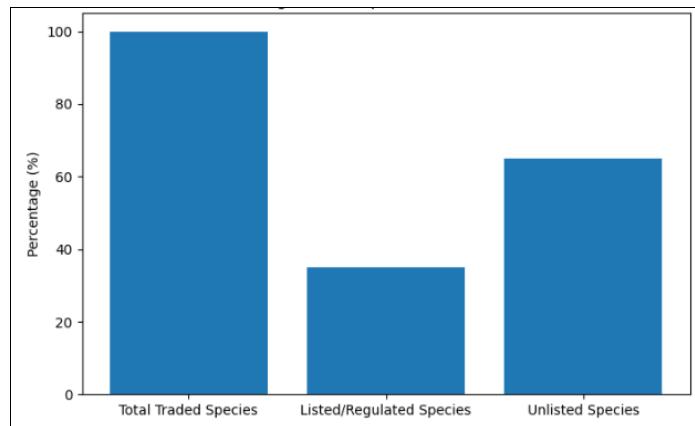
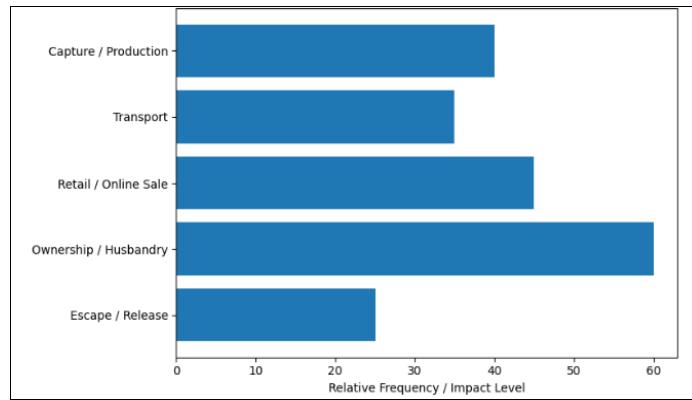


Fig 3: Policy stack: matching regulatory tools to risk points.


7.3 Graphs

Since this draft is provided in chat and is not executed as a live database query, graphs are provided as placeholders,

which can be reconstructed after your preferred dataset is complete.

Graph 1: “Regulation gap” illustration

Graph 2: “Harm pathway” frequency by stage

8. Discussion

8.1 The implication of this synthesis on ethics.

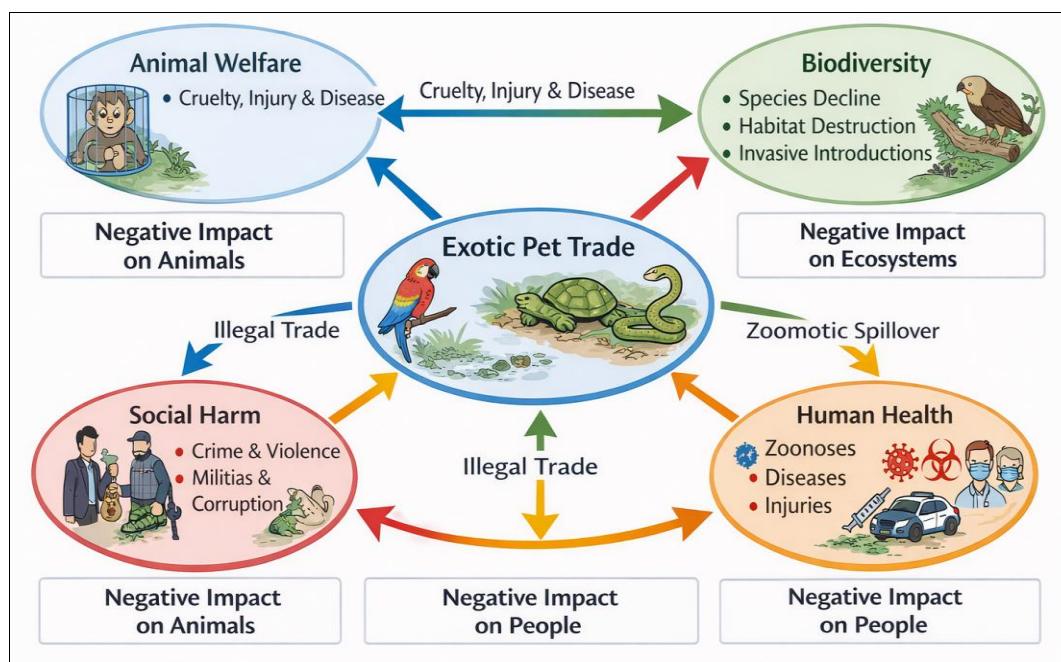
Exotic satellite markets often shift costs, as sellers benefit and animals, owners, health system, and ecological risks are all harmed by these pets (Warwick *et al.*, 2018) [1]. The rights-based arguments include the unacceptability of the commodification of wildlife to companionship (Regan,

1983) [52], whereas the utilitarian viewpoints highlight the prevention of the avoidable suffering and downstream evils (Singer, 1975) [51]. In either of the foregoing theories, one form of moral failure is avoidable harm within foreseeable circumstances: in case typical ownership situations cannot serve the needs of a species, expansion by trade cannot be morally defensible (Schuppli and Fraser, 2000) [56].

8.2 Why welfare harms persist

The detrimental effects of welfare do exist on structural grounds: information asymmetry, unstable husbandry standards, inaccessibility to exotic veterinary care, and incentive of novelty and volume in the market (Warwick and Steedman, 2016; Warwick *et al.*, 2018) [3, 1]. Even good-intentioned owners can be deficient of providing thermal gradients, UV light, complexity of enclosures and proper diets. In the case of high-volume species (e.g., some reptiles) welfare compromise may become normalized and mortality is to a large extent out of market sight (Robinson *et al.*, 2015a) [8].

Implication of the policy: Where suitability mismatch is systematic, policies that just focus on education are not enough, enforceable suitability screening and trade eligibility control is required as a complement (Toland *et al.*, 2020) [5].


8.3. The One-Health governance and public safety are part of the

Examples of low-probability/high-severity (envenomation) and high-probability/low-to-moderate severity exposures (Salmonella) are high public safety risks. The One-Health framing emphasizes the fact that the zoonotic risk is not

only a hygiene issue but also system property of the trade chain: the presence of stress and mixing, as well as the altered dynamics of pathogens, is due to density (Karesh *et al.*, 2005) [21]. Recommendations on the importance of minimizing risk when selling live wildlife show that prevention methods and intersector cooperation are necessary (WHO, 2021; WOAH *et al.*, 2022) [25]. Policy implication: the use of a risk-based approach must identify the subgroups of taxa and trade settings in which hazards are not acceptable (e.g. selling venomous snakes through informal online marketplaces), and promote eligibility and permitting to medical preparedness as well as biosecurity needs (La Laina *et al.*, 2021) [20].

8.4 Environmental hazards and intrusions: why the pet pathway is difficult to control.

The pet trade causes propagule pressure and new species combinations to be applied in non-native environments. A single percentage of escapes/releases can form populations in the event that ecological conditions have been favorable (Blackburn *et al.*, 2011) [30]. There is even evidence that commercially successful species are also overrepresented in invasions, which supports the precautionary approach in high-demand taxa (Gippet and Bertelsmeier, 2021).

Fig 4: Conceptual Model of Exotic Pet-Associated Risk Transmission

9. Policy recommendations

9.1 Embrace positive listing and suitability based eligibility

Positive lists only allow trade in those species which can reliably achieve good welfare and low risk to the public/environment in typical conditions of ownership (Toland *et al.*, 2020) [5]. Suitability labelling systems also aid in consumer protection and dampening the demand for unsuitable species (Warwick *et al.*, 2018; Moorhouse *et al.*, 2017) [1].

9.2 Make licensing, inspections, and online platform accountability

Licensing data highlight actual gaps in oversight in the real

world and can be used for targeting inspection (Elwin *et al.*, 2020) [44]. Online markets need the cooperation of platforms for compliance, listing verification, and quick takedowns of illegitimate/high-risk taxa selling (Siriwat and Nijman, 2018; Lavorgna, 2014) [41, 76].

9.3 Incorporate One-Health measures into governance of wildlife trade

Cross-sector plans are recommended in which wildlife, livestock, and human health systems can be conjunctively integrated and minimise spillage risks (WOAH *et al.*, 2022; UNEP & ILRI, 2020). For exotic pets this means enforceable biosecurity rules, surveillance, as well as education for the owners with an unlock of hazards.

9.4 Conform to treaties on biodiversity, but meet needs of "unlisted species"

CITES is so vital but incomplete as there are many species traded that are not part of CITES (Schlaepfer *et al.*, 2005; Frank and Wilcove, 2019) [28, 47]. Jurisdictions should conduct periodic gap analyses and implement domestic controls for unlisted risky species and consistent with pathway guidance under the CBD with regard to invasive species (CBD, 2014) [63].

10. Limitations and future research

10.1 Limitations

This study synthesizes existing (and potentially non-current) scholarly and policy-oriented literature to develop a conceptual framework for understanding the ethical, ecological and public health dimensions of the exotic pet trade. As such it does not create new empirical data but uses secondary sources, which has a number of shortcomings. First, still available trade datasets - and especially those based on customs records, reports of seizures or online monitoring - are known to be plagued by underreporting, taxonomic misclassification and geographical inconsistencies (Schlaepfer *et al.*, 2005) [28]. These limitations are especially marked with respect to illegal, informal or unregulated trade that frequently occurs outside of the reach of official monitoring systems. As a result, measures of the trade volume and species diversity, and associated risks, are likely to be conservative. Second, the causal inference is still difficult in cases where one is interested in relating wildlife trade to downstream effects (e.g., loss of biodiversity, invasive species establishment, or emergence of zoonotic disease). These outcomes are affected by multiple interacting drivers, such as habitat change, climate variability and land use patterns, making the issue of attribution a complex one (Blackburn *et al.*, 2011) [30]. While, for the most part, existing research is strong associative evidence, exquisitely tracing the independent role of the pet trade requires stronger longitudinal and comparative designs.

10.2 Future Research

Future research should consider the use of quasi-experimental and comparative policy designs to enhance the strengths in terms of causal inference. In particular, cross-jurisdictional comparisons of countries or regions that implement "positive lists" of allowed species or "negative" or permissive regulatory frameworks would be useful in evaluating the success of various governance models at mitigating welfare harms and ecological risk (Toland *et al.*, 2020) [5]. Further work is also required on the governance of online trade on wildlife.

Platform-based studies on algorithmic visibility, enforcement mechanisms and seller behavior could help to better understand the role of digital marketplaces in demand and regulatory compliance (Lavorgna, 2014; Di Minin *et al.*, 2019) [76, 75]. Finally, and for the future, research needs to take integrated One Health approaches that would specifically include reptiles and amphibians, taxa that are often underrepresented in zoonotic risk assessment, while studying household-level exposure pathways and biosecurity weaknesses (Karesh *et al.*, 2005; CDC, n.d.) [21]. Such interdisciplinary research would develop robust evidence-based policy and risk prevention efforts.

11. Conclusion

Exotic pet ownership and trade produce inter-dependencies of harms in the ethical, welfare, public safety, and environmental domains.

It has been shown that there are systematic welfare risks caused by a mismatch of suitability, endangerment of the people to poor health due to conditions of trade chains and environmental costs due to the use of invasive species pathways and biodiversity reduction. Since these harms are systematic, the policy should not be focused on education-based solutions but on precautionary and enforceable governance. Positive lists, suitability labeling, reinforced licensing and online compliance, and One-Health integration are new coherent tools, which directly address the harm mechanisms. The risk-governance model herein defined offers a feasible blueprint of empirical validation and policy assessment with administrative databases, trade statistics and reports of incidents.

Fig 5: Policy Intervention Impact Pathway

References

- Warwick C, Steedman C, Jessop M, Toland E, Lindley S, Arena P. Exotic pet suitability: Understanding some problems and using a labeling system to aid animal welfare, environment, and consumer protection. *Journal of Veterinary Behavior*. 2018;26:17-29. DOI:10.1016/j.jveb.2018.03.015.
- Warwick C, Steedman C. Injuries, envenomations and stings from exotic pets. *Journal of the Royal Society of Medicine*. 2012;105(7):296-299. DOI:10.1258/jrsm.2012.110295.
- Warwick C, Steedman C. The welfare of exotic pets. *Veterinary Record*. 2016;178(26):640. DOI:10.1136/vr.i3350.
- Warwick C, Steedman C. Exotic pet trading and keeping: Proposing a model government consultation and advisory protocol. *Journal of Veterinary Behavior*. 2021;43:66-76. DOI:10.1016/j.jveb.2021.03.002.
- Toland E, Bando M, Hamers M, Cadenas V, Laidlaw R, Martínez-Silvestre A, van der Wielen P. Turning negatives into positives for pet trading and keeping: A review of positive lists. *Animals*. 2020;10(12):2371. DOI:10.3390/ani10122371.
- D'Cruze N, Green J, Coulthard E, Norrey J, Megson D. Dropping the ball? The welfare of ball pythons traded in the EU and North America. *Animals*. 2020;10(3):413. DOI:10.3390/ani10030413.
- Green J, Coulthard E, Norrey J, Megson D, D'Cruze N. Blind trading: A literature review of research addressing the welfare of ball pythons in the exotic pet trade. *Animals*. 2020;10(2):193. DOI:10.3390/ani10020193.
- Robinson JE, Griffiths RA, St John FAV, Roberts DL. Captive reptile mortality rates in the home and implications for the wildlife trade. *PLOS ONE*. 2015a;10(11):e0141460. DOI:10.1371/journal.pone.0141460.
- Schaper A, Desel H, Ebbecke M, Langer C. Poisoning by exotic pets. *Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz*. 2019;62(11):1332-1335. DOI:10.1007/s00103-019-03025-6.
- Moorhouse TP, Balaskas M, D'Cruze NC, Macdonald DW. Information could reduce consumer demand for exotic pets. *Conservation Letters*. 2017;10(3):337-345. DOI:10.1111/conl.12270.
- Bush ER, Baker SE, Macdonald DW. Global trade in exotic pets 2006-2012. *Conservation Biology*. 2014;28(3):663-676. DOI:10.1111/cobi.12240.
- Scheffers BR, Oliveira BF, Lamb I, Edwards DP. Global wildlife trade across the tree of life. *Science*. 2019;366(6461):71-76. DOI:10.1126/science.aav5327.
- Harrington LA, D'Cruze N, Macdonald DW. Live wild animal exports to supply the exotic pet trade: Measures to protect animal welfare and biodiversity. *Conservation Science and Practice*. 2021;3(9):e430. DOI:10.1111/csp2.430.
- Rowley JJL, Shepherd CR, Stuart BL, Nguyen TQ, Hoang HD, Cutajar TP, et al. Estimating the global trade in Southeast Asian newts. *Biological Conservation*. 2016;199:96-100. DOI:10.1016/j.biocon.2016.05.001.
- Seaboch MS, Dunn M, Buchanan-Smith HM. Pet primates for sale in the United States. *PLOS ONE*. 2021;16(8):e0256552. DOI:10.1371/journal.pone.0256552.
- Gippet JMW, Bertelsmeier C. Invasiveness is linked to greater commercial success in the global pet trade. *Proceedings of the National Academy of Sciences of the United States of America*. 2021;118(21):e2016337118. DOI:10.1073/pnas.2016337118.
- Stringham OC, Lockwood JL. Pet problems: Biological and economic costs of alien reptiles and amphibians introduced via the pet trade. *Journal of Applied Ecology*. 2018;55(6):2632-2640. DOI:10.1111/1365-2664.13196.
- Mohanty NP, Measey J. The global pet trade in amphibians: Species traits, taxonomic bias, and future directions. *Biodiversity and Conservation*. 2019;28:3915-3923. DOI:10.1007/s10531-019-01857-x.
- Hughes AC, Marshall BM, Strine CT. Gaps in global wildlife trade monitoring leave amphibians vulnerable. *eLife*. 2021;10:e70086. DOI:10.7554/eLife.70086.
- La Laina DZ, Dutra AC, de Oliveira SV. Illegal online pet trade in venomous snakes and the implications for public health. *Toxicon*. 2021;197:17-24. DOI:10.1016/j.toxicon.2021.04.011.
- Karesh WB, Cook RA, Bennett EL, Newcomb J. Wildlife trade and global disease emergence. *Emerging Infectious Diseases*. 2005;11(7):1000-1002. DOI:10.3201/eid1107.050194.
- Bezerra-Santos MA, Mendoza-Roldan JA, Thompson RCA, Dantas-Torres F, Otranto D. Illegal wildlife trade: A gateway to zoonotic infectious diseases. *Trends in Parasitology*. 2021;37(3):181-184. DOI:10.1016/j.pt.2020.12.005.
- Shivaprakash KN, Sen S, Paul S, Kiesecker J, Bawa KS. Mammals, wildlife trade, and the next global pandemic. *Current Biology*. 2021;31(16):3671-3677.e3. DOI:10.1016/j.cub.2021.06.006.
- United Nations Environment Programme, International Livestock Research Institute. Preventing the next pandemic: Zoonotic diseases and how to break the chain of transmission. Nairobi: United Nations Environment Programme; 2020.
- World Health Organization. Reducing public health risks associated with the sale of live wild animals of mammalian species in traditional food markets. Geneva: World Health Organization; 2021.
- World Health Organization. One Health joint plan of action (2022-2026). Geneva: World Health Organization; 2022.
- Centers for Disease Control and Prevention. *Salmonella and reptiles* [Internet]. Atlanta: Centers for Disease Control and Prevention; n.d. Available from: <https://www.cdc.gov/salmonella/general/prevention.html>
- Schlaepfer MA, Hoover C, Dodd CK. Challenges in evaluating the impact of the trade in amphibians and reptiles on wild populations. *BioScience*. 2005;55(3):256-264. DOI:10.1641/0006-3568(2005)055[0256:CIETIO]2.0.CO;2.
- Lockwood JL, Hoopes MF, Marchetti MP. Invasion ecology. 2nd ed. Oxford: Wiley-Blackwell; 2013.

30. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, *et al.* A proposed unified framework for biological invasions. *Trends in Ecology and Evolution*. 2011;26(7):333-339. DOI:10.1016/j.tree.2011.03.023.

31. Pyšek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, *et al.* Scientists' warning on invasive alien species. *Biological Reviews*. 2020;95(6):1511-1534. DOI:10.1111/brv.12627.

32. Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, *et al.* High and rising economic costs of biological invasions worldwide. *Nature*. 2021;592:571-576. DOI:10.1038/s41586-021-03405-6.

33. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, *et al.* No saturation in the accumulation of alien species worldwide. *Nature Communications*. 2017;8:14435. DOI:10.1038/ncomms14435.

34. Humair F, Humair L, Kuhn F, Kueffer C. E-commerce trade in invasive plants. *Conservation Biology*. 2015;29(6):1658-1665. DOI:10.1111/cobi.12579.

35. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Assessment report on invasive alien species and their control. Bonn: IPBES; 2023. Available from: <https://ipbes.net/ias-assessment>

36. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Text of the Convention. Washington (DC): CITES; 1973. Available from: <https://cites.org/eng/disc/text.php>

37. Convention on Biological Diversity. Convention on Biological Diversity. Montreal: Secretariat of the Convention on Biological Diversity; 1992. Available from: <https://www.cbd.int/convention/text/>

38. United Nations Office on Drugs and Crime. World wildlife crime report 2024. Vienna: UNODC; 2024. Available from: <https://www.unodc.org/unodc/en/data-and-analysis/wildlife.html>

39. TRAFFIC. What's driving the wildlife trade? Cambridge: TRAFFIC; 2008. Available from: <https://www.traffic.org/about-us/>

40. Hughes AC. Wildlife trade. *Current Biology*. 2021;31(19):R1218-R1224. DOI:10.1016/j.cub.2021.07.015.

41. Siriwat P, Nijman V. Illegal pet trade on social media as an emerging biocrime: The case of the otter trade in Thailand. *Journal of Asia-Pacific Biodiversity*. 2018;11(4):469-475. DOI:10.1016/j.japb.2018.09.004.

42. Scheffers BR, Edwards DP. The global wildlife trade is increasingly linked to biodiversity loss and emerging disease risk. *Science*. 2021;372(6544):931-932.

43. Robinson JE, St John FAV, Griffiths RA, Roberts DL. Dynamics of the global trade in live reptiles: Shifting trends in production and consequences for sustainability. *Biological Conservation*. 2015b;184:42-50. DOI:10.1016/j.biocon.2014.12.019.

44. Elwin A, Butler PJ, Churchward C. On the record: An analysis of exotic pet licences in the UK. *Animals*. 2020;10(12):2373. DOI:10.3390/ani10122373.

45. Patoka J, Bláha M, Devetter M, Rylková K, Čadková Z. Aquarium trade as a source of non-native crayfish introductions. *Biological Invasions*. 2018;20:315-324. DOI:10.1007/s10530-017-1549-8.

46. Biondo MV, Burki R. A systematic review of the ornamental fish trade: The public health and ecological risks of aquarium releases. *Reviews in Fish Biology and Fisheries*. 2020;30:1-19. DOI:10.1007/s11160-019-09554-w.

47. Frank EG, Wilcove DS. Long delays in banning trade in threatened species. *Science*. 2019;363(6424):686-688. DOI:10.1126/science.aav4013.

48. Berkunsky I, Quillfeldt P, Brightsmith DJ, Abbud MC, Aguilar JMR, Alemán-Zelaya U, *et al.* Current threats faced by Neotropical parrots. *Biological Conservation*. 2017;214:278-287. DOI:10.1016/j.biocon.2017.08.016.

49. Rosen GE, Smith KF. Summarizing the evidence on the international trade in illegal wildlife. *EcoHealth*. 2010;7:24-32. DOI:10.1007/s10393-010-0317-y.

50. Wyler LS, Sheikh PA. International illegal trade in wildlife: Threats and U.S. policy. Washington (DC): Congressional Research Service; 2013.

51. Singer P. Animal liberation. New York: HarperCollins; 1975.

52. Regan T. The case for animal rights. Berkeley: University of California Press; 1983.

53. Fraser D. Understanding animal welfare: The science in its cultural context. Oxford: Wiley-Blackwell; 2008.

54. Mellor DJ. Updating animal welfare thinking: Moving beyond the "Five Freedoms" towards "A life worth living". *Animals*. 2016;6(3):21. DOI:10.3390/ani6030021.

55. Broom DM. A history of animal welfare science. *Acta Biotheoretica*. 2011;59:121-137. DOI:10.1007/s10441-011-9123-3.

56. Schuppli CA, Fraser D. A framework for assessing the suitability of different animals as pets. *Animal Welfare*. 2000;9:359-372.

57. World Organisation for Animal Health. Terrestrial Animal Health Code. Paris: World Organisation for Animal Health; 2021. Available from: <https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/>

58. Food and Agriculture Organization of the United Nations. Wildlife and emerging zoonotic diseases. Rome: FAO; 2020. Available from: <https://www.fao.org/>

59. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Workshop report on biodiversity and pandemics. Bonn: IPBES; 2020. Available from: <https://ipbes.net/pandemics>

60. United Nations Environment Programme. Environmental crime: Illegal wildlife trade and its impacts. Nairobi: United Nations Environment Programme; 2022. Available from: <https://www.unep.org/explore-topics/environmental-crime>

61. Wildlife Conservation Society. Health, wildlife trade, and pandemic prevention. New York: Wildlife Conservation Society; 2020. Available from: <https://www.wcs.org/>

62. International Union for Conservation of Nature. Guidelines for invasive species management. Gland: International Union for Conservation of Nature; 2020. Available from: <https://www.iucn.org/>

63. Convention on Biological Diversity. Pathways of introduction of invasive alien species. Montreal: Convention on Biological Diversity; 2014. Available from: <https://www.cbd.int/invasive/>

64. European Commission. Regulation (EU) No 1143/2014 on the prevention and management of the introduction and spread of invasive alien species. Official Journal of the European Union. 2014. Available from: <https://eur-lex.europa.eu/eli/reg/2014/1143/oj>

65. United States Congress. Lacey Act. Washington (DC): United States Congress; 1900. Available from: <https://www.fws.gov/law/lacey-act>

66. U.S. Fish and Wildlife Service. Injurious wildlife and the Lacey Act. Washington (DC): U.S. Fish and Wildlife Service; n.d. Available from: <https://www.fws.gov/programs/injurious-wildlife>

67. UK Government. Dangerous Wild Animals Act 1976. London: UK Government; 1976. Available from: <https://www.legislation.gov.uk/ukpga/1976/38/contents>

68. UK Government. Animal Welfare Act 2006. London: UK Government; 2006. Available from: <https://www.legislation.gov.uk/ukpga/2006/45/contents>

69. World Animal Protection. The hidden cost of the exotic pet trade. London: World Animal Protection; 2020. Available from: <https://www.worldanimalprotection.org/>

70. Born Free Foundation. Exotic pets: Welfare, conservation, and public safety concerns. Horsham: Born Free Foundation; 2021. Available from: <https://www.bornfree.org.uk/>

71. U.S. Geological Survey. Invasive species impacts and pathways. Reston (VA): U.S. Geological Survey; n.d. Available from: <https://www.usgs.gov/programs/invasive-species-program>

72. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, *et al.* Impacts of biological invasions: What's what and the way forward. *Trends in Ecology and Evolution*. 2013;28(1):58-66. DOI:10.1016/j.tree.2012.07.013.

73. Hulme PE. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. *Journal of Applied Ecology*. 2009;46(1):10-18. DOI:10.1111/j.1365-2664.2008.01600.x.

74. Courchamp F, Angulo E, Rivalan P, Hall RJ, Signoret L, Bull L, *et al.* Rarity value and species extinction: The anthropogenic Allee effect. *PLOS Biology*. 2006;4(12):e415. DOI:10.1371/journal.pbio.0040415.

75. Di Minin E, Fink C, Tenkanen H, Hiippala T. Machine learning for tracking illegal wildlife trade on social media. *Nature Ecology and Evolution*. 2019;3:406-407. DOI:10.1038/s41559-018-0787-4.

76. Lavorgna A. Wildlife trafficking in the Internet age. *Crime Science*. 2014;3:5. DOI:10.1186/s40163-014-0005-2.

77. World Customs Organization. Illicit trade report. Brussels: World Customs Organization; 2020. Available from: <https://www.wcoomd.org/>

78. INTERPOL. Wildlife crime. Lyon: International Criminal Police Organization; 2020. Available from: <https://www.interpol.int/en/Crimes/Environmental-crime/Wildlife-crime>

79. United Nations General Assembly. Tackling illicit trafficking in wildlife (Resolution 69/314). New York: United Nations; 2015. Available from: <https://undocs.org/A/RES/69/314>

80. Organisation for Economic Co-operation and Development. Illegal wildlife trade: The scale of the problem and policy responses. Paris: Organisation for Economic Co-operation and Development; 2019. Available from: <https://www.oecd.org/environment/>