

P-ISSN: 2706-8919 IJAAS 2019; 1(1): 57-58 www.allstudyjournal.com Received: 18-05-2019 Accepted: 20-06-2019

E-ISSN: 2706-8927

Dr. Amod Kumar Mishra S/o Kedar Mishra, At.+P.O.: Sanahpur, Dist.: Darbhanga, Bihar India

Correlation between direct product and sylows theorem on automorphic image of permutation group

Dr. Amod Kumar Mishra

Abstract

We should know that the product of two sets as a set of ordered pairs. We now search a new group through the product of two groups.

Let G_1 , G_2 be any two subgroups

Let $G = G_1 \times G_2 = [(g_1, g_2): g_1 \in G_1]$

What better way could $g_2 \in G_2$ } there be than to define multiplication on G by (g_1, g_2) $(g_1'g_2') = (g_1 g_1', g_2g_2')$. That G forms a group under this as its composition should not be a difficult task for the reader. We focus on the matter that of G is a group of order 15; it is IDp (interval direct product) of its sylow subgroups.

Keywords: IDP, composition

Introduction

There can't exist any tow homomorphism from $Z_{16} \times Z_2 \to Z4 \times Z4$. If N be the normal subgroup in G if $G = H \times K$ I where H, K are subgroups of G. then it is either N is abelian or N intersects H or K non-trivially. If in and n be relatively prime integer if binary composition of G is multiplication. Then the subgroup G [n] will be $[x \in G | x^n = e]$ and we can denote it by

 G_n . Again the subgroups nG will be $\{x^n | x \in G\}$ and it we can denote it as G^n . So $\overline{Gn} \cong G^n$ it can be good exercise for us to the above things under the multiplication composition:

Theorem 1: Let G be a finite abelian group of order p^n , p a prime, Suppose $G = A_1 \times A_2.....\times A_k$, where each Ai is a cyclic group of order p^n_i with $n_1 \ge n_2 \ge \ge n_k \ge 0$. Then integers $n_1.....n_k$ are uniquely determined called invariant

Problem 1: Suppose G is an abelian group of order 120 and suppose G has exactly three elements of order 2. Find the isomorphism class of G.

Soln: O(G) = $120 = 2^3 \times 3 \times 5$. So the number of isomorphism class of G is p(3) p(1) p(1) = $3 \times 1 \times 1 = 3$ and these are $Z_2 \times Z_3 \times Z_5 = Z_8 \times Z_3 \times Z_5 = Z_8 \times Z_3 \times Z_5 = Z_8 \times Z_5 \times Z_5 = Z_8 \times Z_8 \times Z_5 = Z_8 \times Z_8$

 $Z_4{\times}Z_2{\times}Z_3{\times}Z_5,\,Z_2{\times}Z_2{\times}Z_2{\times}Z_3{\times}Z_5$

 $Z_8 \times Z_3 \times Z_5$ has only one element (4, 0, 0) of order 2 so it can't be G.

Again $Z_2 \times Z_2 \times Z_2 \times Z_3 \times Z_5$ has (1, 1, 1, 0, 0), (1, 0, 1, 0, 0), (0, 1, 1, 0, 0) and (1, 1, 0, 0, 0) as elements of order 2. So it cant'be G where as $Z_4 \times Z_2 \times Z_3 \times Z_5$ has exactly three elements (2, 1, 0, 0, 0), (0, 1, 0, 0), (2, 0, 0, 0) which have order 2 hence G is $Z_4 \times Z_2 \times Z_3 \times Z_5$

Lemma: Let G be a finite group under addition, Let n be a positive integer St. $nG = \{nx: G = \{nx:$

 $x \in G$ } and $G[n] = \{x \in G : nx = 0\}$ then nG and G[N] are subgroups of G and

Aim: Since Z_n has an elements of order n and G has no element of order n. Therefore G is not Z_n .

Again $Z_2 \times Z_2 \times Z_2$ has no element of order 4 and so we are left with the only choice that G is $Z_2 \times Z_2$ to write G as IDP of cyclic groups, we pick up an element of maximum order 4. As we know if G be an abelian group of Prime power order p^n and let $a \in G$ has maximal order

Corresponding Author: Dr. Amod Kumar Mishra S/o Kedar Mishra, At.+P.O.: Sanahpur, Dist.: Darbhanga, Bihar India amongst all elements in G. Then G is IDP of A and K where A is the cyclic subgroup generated by a and $K \le G$. Hence G can be expressed as $G = A \times K$.

Conclusion

A finite abelian group is direct product of cyclic group of prime power order.

 $S_1 = is IDP \text{ of } A_L \text{ and } K_i, S_L = Ai \text{ ki, } A_1 \cap ki = < e$

 \therefore O $(S_i) = \overline{{}^{O(A_i \cap K_i)}} = O(A_i)O(K_i)$. But O $(S_i) = P_i^{\alpha i} = Prime$ order and Thus $O(A_i)$ and O (K_i) being its divisors are also prime powers summing up we notice that any finte abelian group is product of S_1, S_2, \ldots, S_n . Where each S_i is a group of prime power. Order and each S_i is Then a product of cyclic group of Prime power order.

If $n=P_1^{\alpha 1}\,P_2^{\alpha 2}...\,P_r^{\alpha r}$. Where P_i^S are distinct primes. Then the number of non- isomorphic abelian group of order n is $P(\alpha_1)\,P(\alpha_2)....P(\alpha_r)$ where $P(\alpha_i)$ denotes the number of partition of α_i . If G be the finite abelian group of order m^n . Where $p\times m$. Then G is IDP of H and K. Where $H=\{X\in G:|xP^n=e\}$ and $K=\{x\in G|x^m=e\}$. two abelian groups of order p^n are isomorphic if and only if they have the same invariants. The no of non isomorphic abelian group of order p^n . P a prime equals the number of partitions on n.

References

- 1. Herstin IE. Topics in Algebra 2nd Edition.
- Joseph Galion

 Contemporary Abstract Algebra 9th

 Edition
- 3. Vijay K Khanna, Bhambri SK. A Course in Abstract Algebra 4th Edition.