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Abstract
Cloud based services have grown substantially due to the cost-effective migration of applications to the 
cloud. As a result, there are now a plethora of data centers that can provide these services on a massive 
scale, with a wide variety of the user experience and very little downtime. The need to control the 
power consumption and performance of the data center's constituent nodes without affecting service 
level agreements (SLAs) arises from the promise to provide differentiated services on a large scale. 
The efficiency of the power consumption in such data centers poses a significant challenge to cloud 
computing. Data center server energy consumption may be reduced by the use of various optimization 
methods, such as workload consolidation and machine location. Here, we provide a data-driven 
predictive neural network architecture that, at any given time in the future, can accurately predict the 
server's power consumption by taking into account all of its components in addition to the load of 
incoming requests. 

Keywords: Energy savings, cloud computing, data centers, machine learning, neural networks, and 
optimization 

1. Introductions
There is great promise for real-time near-optimal solutions with optimum predictive power 
management systems for hybrid electric cars. An accurate priori estimation of power 
consumption and the use of simplified driveline simulations to obtain an optimal control 
strategy live are key concerns for power management algorithm prediction. Finding suitable 
answers to these challenges is essential if real-time PMSs are to establish efficient power 
management strategies and encourage greater energy economy in electric powertrains [1]. 
Data centers may maximize their use of energy storage batteries to lower their Total Cost of 
Ownership, or TCO, as power storage methods for energy improve in capacity, cycle life, 
and reliability. With careful control of battery charges and discharges while preserving 
uninterruptible power systems capacity, data centers may reduce power consumption by 
filling the valley and lowering the peak [2]. To combat the climate with energy crises, a 
common strategy nowadays is to use a mix of traditional power plants and renewable power 
sources like solar panels. Energy management becomes much more complex when users' 
power demands fluctuate and solar systems exhibit unpredictable behavior [3]. Customers of 
cloud services are able to dynamically adjust their resource demands due to the flexibility of 
cloud resources. However, issues with resource utilization, load imbalance, with excessive 
power consumption might arise due to changes in resource needs and the pre-defined 
dimensions of VMs [4]. Hosting Internet-related services with cloud computing is made 
possible by the physical infrastructure provided by data center networks. Providers of 
Internet-related services and cloud computing must ensure the correct design of their data 
center networks in order to get competitive advantages in terms of service quality and cost 
efficiency [5]. In order to address the drawbacks of limited data, inflexibility of set 
mathematical models, inaccurate power predictions, and inept power management, a cloud-
based system for new energy power prediction and control was developed. Together, the 
monitoring subplatform and the cloud subplatform constitute a twin platform that can 
simultaneously address the needs of cutting-edge big data creation and real-time control. At 
the same time, you may establish real-time connection to the power grid dispatching center. 
The model for predicting the electricity output of wind farms and solar systems is based on a 
neural network developed by BP [6]. The exponential growth in data volume has elevated 
networks of data centers to the status of essential infrastructure. Oversubscription, poor space 
utilization, excessive power consumption, and complicated cabling are some of the issues 
that DCNs face as a result of this growth [7]. 
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2. Related Work 
The report suggested using a feed forward neural network 
based on particle swarm optimization to estimate the aging 
of batteries in [8]. To fine-tune the FNN's biases and weights, 
that PSO is used. In order to ensure that the suggested 
technique is legitimate, it was compared against traditional 
FNN using battery data sets that were supplied by the 
NASA Prognostics Centre of Excellence. The simulation 
findings demonstrate that PSO-FNN performs much better 
in systems with a high degree of volatility. 
Because of its accessibility, resources like as solar, wind, 
geothermal, as well as fuel cells are of utmost relevance 
from a [9] perspective. Tightening and synchronizing MGs to 
the power grid is very challenging because to their scattered 
and small-scale energy generation. Proper monitoring and 
management of electricity quality is important even after 
integrating MG with conventional grid systems. That 
research utilizes a Distributed Static Compensator trained by 
an Artificial Neural Network to monitor and maintain the 
Power Factor, active power, and reactive power of a grid-
tied MG system. When put side by side with a conventional 
fuzzy logic controller, ANN proves to be the better choice. 
The suggested system's simulation data is used to conduct a 
short study under various operating conditions utilizing 
Matlab/Simulink architecture. Based on the outcomes, it is 
clear that ANN controllers outperform FLCs when it comes 
to enhancing system properties like stability, dynamic 
responsiveness, and efficiency. 
The article demonstrates a fuel cell vehicle predictive PMS 
that is built on neural networks in [10]. In order to create the 
necessary PMS prediction models, the suggested technique 
employs two network types: time-delay as well as nonlinear 
autoregressive with external inputs. An ideal power split 
strategy taking into account low energy usage as well as on-
board charge retention is investigated by the online control 
component across the expected horizon. A test driving 
cycle's global optimum solution and a rule-based technique 
are both taken into account for comparison assessment. The 
results showed that the suggested strategy might enhance 
energy efficiency by 20.71% without affecting the state-of-
charge of energy storage devices. 
Research will employ a Recurrent Neural Network approach 
with a Bayesian Regularization Algorithm to forecast PV 
power production one day in advance [11] due to the system's 
ability to resolve issues with prediction, classification, as 
well as energy management. The average absolute 
percentage error is used to determine the degree of 
inaccuracy in the study's simulation results. A comparison is 
made between the actual data and the accuracy of PV power 
forecasts using the RNN algorithm. In the future, the grid 
will make up for the amount of electricity that PV cannot 
provide. The optimal MAPE value of 2.2784% was 
achieved by predicting PV power using the RNN technique 
with four neuron hidden layers with a learning rate of 0.01. 
You may use the findings to predict how much PV power 
you will need for the next day by combining the RNN 
approach with past data. 
The use of Deep Reinforcement Learning for controlling the 
charging and discharging of data center batteries is 
examined in the work [12]. The optimal charging and 
discharging times for batteries are determined by taking into 
account the current power price, the battery's state, and its 
cycle life. That allows for the optimization of savings on 
electricity bills. They meticulously planned the system's 

state, charging and discharge operations, reward function, 
and neural network architecture to get larger advantages. 
The results of the simulations show that the suggested 
algorithm can determine the optimal savings strategy in the 
energy pricing regimes of both the United States and 
Beijing. Priority experienced playback Deep Q-network 
may enhance energy storage savings by 47% and 55% with 
US and Beijing power costs, respectively, as compared to 
the baseline algorithm. 
A novel adaptive learning network is suggested in the paper 
[13] by combining a neuro-fuzzy inference system that adapts 
network with a deep determinism policy gradients network. 
An innovative global K-fold fuzzy training technique is 
used to build the ANFIS network, which is then used to 
implement the offline dynamical programming solutions in 
real-time. The next step is to build the DDPG network so 
that the ANFIS network may regulate its input with the real-
world reinforcement signal. By integrating the ANFIS and 
DDPG networks, a control utility that is dependent on the 
vehicle's energy consumption with battery state-of-charge 
may be optimized. Experimental examinations have 
validated the DDPG-ANFIS system's dependability and 
efficiency. The vehicle under investigation attained a CU 
that was 8% higher when fitted with a DDPG-ANFIS 
network as opposed to when the MATLAB ANFIS toolkit 
was employed. The DDPG-ANFIS network outperformed 
the ANFIS-only network by 138% and the DDPG-only 
network by 5% in five simulated real-world driving 
situations with the greatest mean CU value. 
Using smart grids and artificial neural networks provide a 
novel approach to energy management in [14]. That will 
make sure that even if energy use and generation are 
operating at random, the customer will always have access 
to power. The MATLAB/Simulink tool is used to model and 
simulate the global system. 
Data on total generated solar power in Turkey from 2009 to 
2019 was used in the research [15]. They used this 
information to train an Artificial Neural Network (ANN) 
using Bidirectional long- and short-term memory techniques 
to predict the amount of solar electricity that would be 
installed in 2020. The cumulative power supply was 
predicted, and the results were assessed and comprehended. 
 
3. Proposed Study 
3.1 System Model  
Neural networks are a kind of machine learning algorithm 
that find application in several domains. Some examples 
include sports scores, market pricing, weather forecasts, 
safety-related applications, voice and photo recognition, as 
well as other data-driven predictions. Neural networks are 
able to learn new information automatically by detecting 
patterns in the given training data. Neural networks 
outperform statistical models when it comes to interpreting 
information that is non-linearly varied and linearly 
dependant. When making a prediction, it's best to utilize 
both independent and dependent data. This can help prevent 
overfitting, which may happen when only using dependent 
data in a model. The accuracy improves in direct proportion 
to the size of the training data set. 
 
3.2 Power Management Model  
Efficient power administration in data centers is critical for 
minimizing energy consumption and cost, and this can only 
be achieved with an accurate host power model. Various 
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workloads and host conditions need evaluating the power 
models. We have tested several host setups and workload 
types (CPU, memory, as well as disk-intensive) to evaluate 
various current power models. Several performance counter 
characteristics that govern system power consumption have 
been established by an analysis of system performance and 
the nature of the hosts' power consumption. 
As an example of publicly accessible experimental data, this 
article makes use of Google cluster workload. The workload 
in a data center is made up of jobs, and each job might have 
more than one task. Each task's start and finish times, as 
well as its CPU and memory utilization, are detailed in the 
Google cluster trace. This data allows us to determine the 
server cluster's (CPU as well as memory) resource 
utilization for each instance. Each time slot, which is usually 
5 minutes long, has its CPU and memory resource 
utilization normalized to the maximum resource usage for 
the whole time frame. By combining precise server power 
modeling with CPU and memory use data, we are able to 
approximate the server cluster's power consumption. We use 
the predicted power consumption trace, the CPU and 
memory utilization traces, and other metrics as the 
experimental workload information. 
Kindly be informed that the data center's power 
consumption forecast system has the potential to include the 
power use effectiveness (PUE) proportion, which mitigates 
the effects of various inefficiencies (such as cooling power). 
The following is the definition of PUE, which assesses the 
connection between the overall facility energy consumption 
and the energy used by IT equipment:  
 

 (1) 
 
By factoring in the PUE ratio, the prediction approach is 
able to go beyond estimating the power consumption of IT 
equipment and directly estimate the whole power 
consumption of the facility. 
 
3.3 Neural Network with Q-Learning Model  
When dealing with MDP issues, reinforcement learning is 
often the method of choice. When faced with challenges in 
an unfamiliar setting, reinforcement learning methods like 
Q-learning might be useful. The fundamentals of 
reinforcement learning as it pertains to data centers and 
power management are shown in Fig. Here, the agent's 
present state is determined by environmental input, and it 
changes depending on actions done and incoming workload. 
After that, we'll provide a quick rundown of Q-learning 
before introducing the deep neural network (DRL) based 
power allocation technique. 
Using real-world operations data, we trained the structure of 
neural networks to predict the power consumption of 
distributed DCs.  
First, we use a discrete-time Markov decision process 
(MDP) to describe our issue. In this approach, the whole 
time horizon is partitioned into time slots, which forms the 
basis of a reinforcement learning-based solution . 
The power demand is included in the system's state s^t at 
period t , battery state , and the temperature of the 
server's intake  as the power allocation defines the 

activity . We may summarize our problem's MDP 
formulation as follows: 
 System state:  
 Action:  
 State transition probability:  
 Reward function:  
 Discount factor:  
 
The present state s^t determines the action area A in this 
case. The pair  results in a change in the 
system's status  to  when action  is occupied. 
Potential for a state to change  gives the 
likelihood that the system's state will change from  to 

 assumed action  is in use at . The reward task 
 specifies the prompt benefit in the context 

of the state-action tuple . 
Action Space. We examine a continuous action area for 
power allocation using two separate scenarios in our MDP 
formulation. We begin by allocating enough power to meet 
the total demand in cases when the data center's power 
capacity is insufficient, i.e., . Secondly, we may 
add battery power up to its full capacity when demand is 
higher than capacity i.e., . 
The present system states^t may be used to define the 
acceptable action space . 
 

𝒜𝒜 = �𝑝𝑝𝑎𝑎
𝑡𝑡 = 𝑝𝑝𝐷𝐷𝑡𝑡 ,  when 𝑝𝑝𝐷𝐷𝑡𝑡 ≤ 𝐶𝐶0
𝑝𝑝𝑎𝑎𝑡𝑡 ≤ 𝐶𝐶0 + min(𝑝𝑝𝐷𝐷𝑡𝑡 − 𝐶𝐶0, 𝑏𝑏𝑡𝑡),  when 𝑝𝑝𝐷𝐷𝑡𝑡 > 𝐶𝐶0

 

 (2) 
 
Q-learning. This model-free MDP problem-solving 
algorithm uses off-policy reinforcement learning. Put 
another way, Q-learning can successfully figure out the best 
course of action even when given no background 
information about its surroundings. For each potential state-
action pair, the learnt strategy is stored as a discrete value of 
Q able. If we choose the action with the greatest value of Q 
in Eqn. (3), we can then extract the Q policy as π^Q 
 

  (3) 
 
Estimating Jf values for Q from the reaction of the 
environment is the key process in Q-learning. Through the 
use of a fixed-point loops of the Bellman equations (Eqn. 
(4)), the Q values for MDP in a specific environment may 
often be trained offline. It is possible to demonstrate the 
conventional Q-learning approach using a rate of learning α 
next. 
 

 (4) 
 
On state transitions with Markovian assumptions. The 
server inlet temperature and battery level b^t are relevant to 
our issue.  each changes as a result of the activity done 
to distribute electricity. Since the Markovian process is 
appropriately followed, the state of the battery b^t is only 
altered when the power transmission action p_a^t exceeds
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the capacity C_0 as well as necessitates a battery 
supplementary to fulfill the demand. But our problem 
formulation needs a large enough temporal granularity Δt 
for temperature changes to happen and satisfy the MDP 
criterion. The reason for this is the time-consuming nature 
of changing the temperature. Nevertheless, this constraint on 
Δt may be circumvented by the use of an improved multi-
level MDP, in which the subsequent state is influenced by 
both the present and previously visited states with actions; 
nevertheless, this expansion of the state-action field comes 
at a cost. 
Contrarily, the MDP assumption is violated since 
modifications to the power consumption p_D^t primarily 
rely on user behavior as well as may not be related to the 
present condition and activity. The MDP formulation is 
made easier by taking the power requirement of the 
following time slot into account  is known at the time t 
by estimating the workload. Based on the present state and 
the action, our solution may identify the future state in this 
way. In order to automate the process of power demand 
estimate, we include an LSTM network into our design. 
Reward function. Here is how we come up with our 
incentive function to achieve OPA's optimization goals: 
 

(5) 
 
Where  constitutes a 
temperature infraction,  the amount of power 
used by the battery during time slot t, along with the weight 
parameters are β1 and β2. 
Similar to OPA's optimization goal, (5) rewards a reduction 
in latency favorably. Also, since both the energy from 
batteries and the temperature of the air can be remembered, 
we use penalties for overusing the batteries and temperature 
violations to include their effects into future choices. The 
optimization aim may be altered by adjusting the values of 
β_1 and β_2, which also function as units onversion 
coefficient ^1. As an example, a more conservative battery 
state will be achieved by raising β_2, whilst a more 
restricted temperature iolation state would be produced by 
arger values of β_1. Keep in mind that our action space 
satisfies the third power allocation restriction . 
Finding the best action policy A^* to maximize the long-
term payoff is the goal of the MDP issue  through 
a discount actor . Here, we introduce the element 
of discounting γ in order to create an issue that can be 
handled easily. 
A. Model Implementation As shown in figure, there is a 
general four-layer neural network. This network takes as 
input a matrix x with dimensions (m x n). The number of 
factors, like server load, temperature, power consumed by 
inter-process communication, etc., and the number of 
training samples, m and n, respectively, are used here. The 
information is received by the input layer of the sensory 
nodes. The network's fundamental units are neurons. 
Neuron activation function is a non-linear function that is 
realized by each neuron by adding the results of weights 
coefficients with input data. The expected power, denoted as 
hθ(x), is the result of this process occurring at each layer. 
The complexity of the system determines the size and 
quantity of neurons. The neural network must be trained 
following four distinct phases. 

Using a non-linear activation function called a Smooth 
Rectangle Unit (ReLU), we trained an ANN, or artificial 
neural network, that uses feed-forward back propagation. 
The ANN's input and weight vectors were regularized via 
this process. Equation (6) defines the Smooth ReLU: 
 

 (6) 

 
When assessing the model's performance across unknown 
patterns, we additionally took into account the Root mean 
square error (RMSE) and the Mean Absolute Percentage 
Errors (MAPE), as shown in equations (7) and (8): 
 

 (7) 

 

 (8) 

 
Where  and  denote the expected and observed 
values, correspondingly, and M stands for the quantity of 
training data. Here is how we calculated the accuracy 
percentage: 
 
Accuracy  (9) 
 
4. Results and Discussion 
A cloud with four geographically dispersed data centers 
(DCs)-DC1, DC2, DC3, and DC4-in Manitoba, Quebec, 
Ontario, and Minnesota, respectively-was proposed. In order 
to maintain the thorough surveillance, we additionally 
supplied our virtual DCs with several types of RE. Table 1 
displays the details of our DCs, including the number of 
servers, server type and specifications, and more. 

 
Table 1: Different Servers in DCN for Configuration 

 

Location Server type Server  
number 

Server spec. 
Active(kW) Idle (kW) 

Manitoba Intel E5506 1500 0.419 0.146 
Quebec Intel X5570 1000 0.352 0.153 

Minnesota AMD EPYC 7601 2000 0.483 0.138 
Ontario Intel E5-2699 1500 0.529 0.102 

 
Table 2: ANN- along with LSTM-based predictions using actual 
data, together with average normalizing values of CPU, memory, 

and power consumption. 
 

 CPU Memory Power 
ANN 0.307 0.390 0.357 
LSTM 0.286 0.437 0.354 
Actual 0.302 0.435 0.362 

ANN MAE 6.54% 7.35% 6.10% 
ANN-QL 6.04% 3.53% 4.42% 

 
As a last step in training for optimal accuracy, we use back 
propagation to alter the weights of the coupled neurons. In 
order to address the back propagating mistakes, we used an 
approach for adaptive rate of learning optimization called 
the Adam optimization. It is evident that our model has 
minimum computational complexity due to (i) the limited 
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quantity of neurons in the hidden layer and (ii) low-
frequency of prediction execution. 
In our ANN with QL technique, we began utilizing neural 
network weights distributed uniformly among [1, −1] to 
limit the error and avoid the formation of an unstable 
equilibrium. Due to the error's propagation backwards 
across the disguised layers, it is vital to apply the same 
settings. Lastly, our training information set contains 14 
days' worth of operational data, or 12096 input samples, 
with a precision of 15 minutes each. Out of the complete 
data, we trained with 80% and tested with the remaining 
20%. 

 
Table 3: Performance Metrics using ANN-QL 

 

Metric Training/total data 
90% 80% 70% 60% 

RMSE 62.2 65.2 80.1 95.7 
MAPE 22.8 25.3 28.2 29.5 

Accuracy 95.2 95.56 96.2 97.5 
 
Here, we check how well the prediction model worked. As 
previously stated, we used two measures for evaluation: 
RMSE and MAPE. To ensure accurate predictions, we used 
test data in conjunction with the training information to train 
the prediction model. The relationship between the amount 
of training information and the total data is shown in Table 
7, along with the RMSE and MAPE. 
The findings reveal that the prediction accuracy rises with 
higher training data sizes, while the result is reliable 
regardless of the amount of the training data. With an 80% 
training data quantity, Figure 8 shows how well our 
prediction model performed in both the training and 
evaluation procedures. On an Intel(R) Pentium G2120 CPU 
with 4 GB of RAM, we execute the 800 epochs using 498s 
to build the model. 
 
5. Conclusion 
This study's findings highlight two key points: first, the 
influence of all factors other than load on power prediction 
accuracy, and second, the capacity of neural networks to 
accurately extract relationships between heterogeneous 
components for power prediction. Additionally, the 
aggregater's continual monitoring, which is based on the 
established rules to take action on the anticipated power, 
aids in power containment at servers and, by extension, 
impacts total energy consumption. There is a high degree of 
agreement between the projected and actual power 
consumption here. In order to determine what steps to take 
next, the aggregator takes into account the expected power 
at each node. The paper's occurrences and the steps to be 
executed in response to them are specified by hand for the 
purpose of predicting power values. The end objective of 
our project is to use reinforcement learning mechanisms, 
such as Q-learning, to accurately describe events and their 
accompanying actions dynamically based on past inputs. 
 
6. Future Work  
We are also going to investigate a wider range of historical 
data. Moreover, leveraging the result of this study for 
proposing new approaches of power management in geo-
distributed DC as well as creating new opportunities for 
participating in ancillary energy markets are among the 
goals that we left for future work. 
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